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ABSTRACT 

 

Recent trends in composite research include the development of structural 

materials with multiple functionalities.  In new studies, novel materials are being 

designed, developed, modified, and implemented into composite designs.  Typically, an 

increase in functionality requires additional material phases within one system.  The 

presence of excessive phases can result in deterioration of individual or overall 

properties.  True multi-functional materials must maintain all properties at or above the 

minimum operating limit.  In this project, samples of antimony and cobalt-doped tin 

oxide (ATO(Co2O3)) sol-gel solutions are used to coat carbon fibers and are heat treated 

at a temperature range of 200 – 500 °C.  Results from this research are used to model the 

implementation of sol-gel coatings into carbon fiber reinforced multifunctional composite 

systems.  This research presents a novel thermo-responsive sol-gel/ (dopant) combination 

and evaluation of the actuating responses (reflectivity and surface heat dissipation) due to 

various heat treatment temperatures.  While ATO is a well-known transparent conductive 

material, the implementation of ATO on carbon fibers for infrared thermal reflectivity 

has not been examined.  These coatings serve as actuators capable of reflecting thermal 

infrared radiation in the near infrared wavelengths of 0.7-1.2 μm.  By altering the level of 

Co2O3 and heat treatment temperatures, optimal optical properties are obtained.  While 

scanning electron microscopy (SEM) is used for imaging, electron diffraction 



www.manaraa.com

ix 

 

spectroscopy (EDS) is used to verify the compounds present in the coatings.  Fourier 

transform infrared (FT-IR) spectroscopy was performed to analyze the chemical bonds 

and reflectivity in the infrared spectra after the heat treatments.  Total reflection and 

angle-dependent reflectivity measurements were performed on the coatings in the 

wavelengths of 0.7-2 μm.  Laser induced damage threshold testing was done to 

investigate the dielectric breakdown and used to calculate surface temperatures. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1. Applications of Thermal Infrared Reflectivity 

 

Infrared wavelengths can be used to detect and image a vast amount of objects in 

our daily environment.  For military purposes, thermal infrared imaging can be used to 

sense various objects in dark areas.  This imaging phenomenon is made possible from the 

thermal infrared radiation objects emit in free space.  It is also from this phenomenon 

where understanding the use of infrared radiation to damage a surface comes from.  In 

order to damage a surface in a specified amount of time, the infrared radiation of an 

object must be less than the radiation being used to damage it.  Several other factors vary 

the required infrared radiation amount, such as altitude, distance from target, and 

elements between the targets (i.e., moisture, temperature change).  In the effort of 

promoting stealth and increasing longevity of aerospace vehicles subjected to infrared 

radiation imaging and damage, a selection of coatings can be added to the structure.  

These coatings molecularly interact with infrared light to reflect or absorb the photons 

being emitted towards its surface.  The surface chemistry dominates the interaction of 

infrared radiation on a surface of specified material.  Therefore, a selected amount of 

lasers of designated wavelengths are used in specific applications.  It is because of this 
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that the implementation of thermally reflective coatings occur in multiple areas of 

application.  The selection, alteration, and functionalization of materials is critical to the 

success of high reflectivity from a specified material.  

 

 

Figure 1.1.1. Infrared spectra from 0.7 to 1 millimeter.[1] (public domain) 

 

Thermally reflective materials are investigated for their capability to withstand 

certain amounts of laser power at specified times.  Infrared lasers operate in all bands of 

the infrared spectra – near, mid, and far infrared.  Figure 1.1.1 shows the bandwidth for 

the infrared spectra. [2, 3]  In the field of optics, materials are investigated for their 

capability to withstand certain amounts of laser powers at specified times.  Laser 

degradation is a technique used to examine materials for their optical strength under laser 

radiation in applications such as optoelectronics[4], laser mirrors, and even 

telecommunications.  Some variable parameters characterizing the degradation are laser 

intensity (J/cm
2
), beam width (μm), pulse width or speed (ns), and power (watts).  While 

laser power can reach hundreds of megawatts (MW), laser degradation experiments are 

usually done in the lower microwatt (μW) to milliwatt (mW) range.  The operating 

wavelength of a laser depends on the materials inside the laser structure.  For instance, a 

carbon dioxide (CO2) gas laser operates at the 10 μm wavelength, while a Nd:YAG laser 
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operates at 1.06 μm (1064 nm).  Laser wavelength also determines the pulse speed of the 

laser, meaning a laser can be continuous or pulsing at such a fast rate to where it appears 

to be continuous. Because lasers of different wavelengths, frequencies, and power are 

used in designated systems, materials containing a wide range of optical strength must be 

identified and employed for these specified applications.  This field of study can present 

multiple parameters correlated to the laser power and time – dielectric breakdown, 

surface roughness, surface temperature, and laser induced damage threshold to name a 

few.  

 

 

Figure 1.1.2. A hand-held Nd:YAG laser.[5] (public domain) 

 

In the area of military defense, lasers are used to detect and destroy specified 

targets of interest.  Therefore, the synthesis and functionalizing of materials that can 

withstand laser degradation has become of vast interest.  As seen in figure1.1.2, lasers 
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such as a Nd:YAG laser have become hand-held devices and are used in the line of duty.  

Currently, gas lasers such as a CO2 laser require heavy and fragile components that 

consume so much space.  Because of this structural difference, YAG lasers have become 

more popular.  The advancements in technology have allowed the necessary components 

to be condensed, and the device has become a hand-held unit.  A detailed overview of 

laser components and an explanation of why YAG lasers are used in laser interaction 

applications with composites are given in chapter 3. 

 

1.2. Carbon Fiber Reinforced Multifunctional Composites 

 

Fiber reinforced composites have a wide range of applications, such as, nautical 

automobile frame components[4], aerospace vehicles[6], and small airframe design 

apparatus.[7]  The central goal of multifunctional fiber reinforced composites in these 

applications is to achieve high strength to weight ratios at a low cost.  While multiple 

polymers have been tested in industry and research based composite applications, carbon 

fibers have been mostly pursued for its efficiency in reproducibility, simple production 

method, enhanced strength to weight ratio, and tensile strength.  Typically, fiber 

reinforced composites are made in 3, 4, or 6-ply schemes to exploit these morphological 

and mechanical capabilities.  Additionally, carbon fiber alignment has also been 

investigated and proven to have direction dependency of the mechanical properties.  

Tensile, compression, and elasticity strengths vary based on the alignment of the fibers.  

While there are numerous weave patterns in current use and being designed for future 

applications, the most common weave patterns used in composite based airframe designs 
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are 0°/90° and +/- 45°.  Alternating these weave patterns give a better mechanical 

response as opposed to using one pattern style.[8-13]   

In addition to the mechanical properties, more specifically, recent research efforts 

have been aimed at designing materials and composite layup schemes that can increase 

two or more properties (i.e., thermal, electrical, etc.).  Recent composite designs are being 

altered to incorporate multiple reactions based on the composite’s reaction to its 

surrounding environment.    For example, the implementation of carbon nanotube sheets 

(or buckypaper) has been shown to increase composite’s mechanical strength, thermal 

stability, and electromagnetic shielding capabilities [14-16].  While all of the composite 

fabrication techniques share similarities, the VARTM procedure is of interest because:  

 it places the laminate under vacuum lowering chances of air pockets, 

 high rate of uniform resin distribution, 

 low cost tooling, 

 the process does not require high heat or pressure, and  

 it is a simple, one-shot process for large, complex parts 

Recent trends in composite research include the development of structural 

materials with multiple functionalities, such as sensing and actuating.[17]  Typically, an 

increase in functionality requires additional material phases to function within one 

system. The presence of excessive phases can result in deterioration of individual or 

overall properties of the system. True multi-functional materials must maintain all 

properties at or above the minimum operating limit, which can theoretically be achieved 

through volume fraction optimization.  Figure 1.2.1 shows a Lockhead Martin F-22 

fighter jet that has wings made from carbon fiber reinforced composites enclosed in metal 
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casings to improve the flight weight of the aircraft. .[9] Because of this feature, aircrafts 

become more maneuverable, or the structure can take on additional weight in other areas 

such as cargo, engine parts, and munitions. 

 

 

Figure 1.2.1. Lockhead Martin F-22 Fighter Jet.[18] (public domain) 

 

Multifunctional carbon fiber composites have become vital components in the 

development of defensive weaponry and aircraft designs and have even expanded into 

multiple areas of research.  For instance, military soldiers have expressed concerns about 

new threats that they face while completing a missions using aerial vehicles comprised of 

fiber reinforced composites.  In an effort to address these issues, defensive mechanisms 

are being integrated into the design of multifunctional carbon fiber composites.  A review 

of carbon fiber composites is given in chapter 2. 
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1.3. Sol-gel Coating Applications and Techniques for Reinforcing Composites 

 

In past research, reflection and absorption for specified wavelengths has been 

demonstrated by various materials on the micro and nanometer scale.[19]  Thermal 

infrared radiation reflective property of the selected materials is mainly based on low 

emissivity.  Typically, a low-emissive coating can reflect 85-95% of the thermal radiation 

while still allowing 60-65% transmittance of optical wavelengths.   

 

 

Figure 1.3.1. Infrared light from a monochromatic infrared light source being reflected 

off the surface of a 4-ply reflective composite. 

 

A wide range of applications such as telecommunication system chips[20], 

window pane sensors for greenhouses[21], and junction layers for solar cells[3] have 

been developed from these material advancements.  In relation to this proposed research, 

it has been demonstrated that chemically tailored oxides deposited on fiber surfaces can 

reflect in a desired range of wavelengths.  The application of reflective sol-gels being 

incorporated into composites has been examined in previous research[22], but literature is 

limited to a selective amount of dopants being added to metal oxide sol-gel solutions.  

4-ply 

reflective 

composite 

Infrared light 

source 

Reflected 

infrared 

waves 
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Figure 1.3.1 gives an illustration of an infrared reflective composite design demonstrating 

the ability of a composite to reflect.  Reflection capabilities are also a result of dopant 

concentration and morphology.  For example, antimony (Sb) doped tin oxide (SnO2), or 

(ATO), has been proven to have high conductivity, low resistivity, high transparency in 

the visible range, and thermal infrared reflective (TIR) properties.[23-30] Also, research 

has shown that the combination of metal oxide sol gels with ferromagnetic materials can 

increase the uniform coverage and the infrared reflectivity.[31-33] 

 

1.4. Contributions to the Practice, Goals, and Objectives 

 

1.4.1. Contributions to the Practice 

Since the invention of the laser by Dr. Charles Townes and and Dr. Aurther 

Schawlow in 1958 at Bell Labs, physicists and engineers have been inquisitive on the 

possibilities of creating a laser weaponry.  Within the past 10 years, scientists, several 

military branches, and the Department of Defense have collaborated to produce such a 

product in multiple research efforts.  Collectively, the main objective was to design a 

laser that can focus high energy on a specified target and be used as a weapon against 

threats or attacks.  From these efforts, such projects as the Airborne Laser Project (ABL) 

and the Advanced Tactical Laser Project (ATL) have been created.  These projects 

mainly differ in target sensor range.  While the ABL project was used to sense and 

destroy ballistics of high altitude, the ATL project was used as an accompaniment for 

ballistics of mid and low range altitude.   
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Because of this effort, the Air Force has expressed concern in designing coatings 

of high reflectivity to combat similar systems that may be used as threats to our 

environment.  Particularly, recent efforts in reflective composite design have become of 

concern for protection against laser degradation to mid and low range ballistics frames 

containing fiber reinforced composites. This presented research serves as an effort to 

design a high reflective coating, capable of reflecting certain wavelengths and intensities 

and minimizing effects of strength to weight ratio.  In addition, contribution to the 

practice involves composite-based coatings for unmanned aerial vehicles (UAVs) and 

their role in the front line of duty.  Soldiers currently use these RC-controlled aerial 

vehicles to survey the land before they enter for possible traps, bombs, and attacks.  

Enemies of war have been aware of this precautious tactic, and have the capability of 

using handheld Nd-YAG lasers and other portable, target-locking systems to burn holes 

in the airframe.  This causes the UAV to crash long before the mission is complete.  

Designing a coating that can prevent laser degradation yet add virtually negligible weight 

to the deployed airframe or munitions is of importance to the Air Force.  The fabrication 

technique presented in this work demonstrates how tin oxide co-doped with antimony and 

cobalt oxide ATO(Co2O3) can be implemented into the design of carbon fiber-based 

airframes and munitions as a sol-gel coating and provide protection against thermal 

infrared damage at 1064 nm.  While previous research has confirmed the mechanical and 

thermal properties of carbon fiber reinforced composites, no previous research has 

examined the thermal, mechanical and optical enhancements of a metal oxide sol-gel 

coating on carbon fibers.  From this work, future applications including multiferroic 
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composites, fiber-reinforced munitions, and aerospace vehicle frames will benefit from 

the data provided from the in-depth investigation.  

 

1.4.2. Goals and Objectives 

Progress made by this research will satisfy the primary objective - to enhance 

carbon fiber composite-based aircraft capabilities to withstand infrared laser degradation.  

Optimization of the ATO(Co2O3) sol gel deposition process, doping concentration, and 

interaction with the carbon fiber surface will be defined for maximum optical and thermal 

performance.   In an effort to efficiently examine the optical parameters and obtain 

sufficient data to satisfy the primary goal, the following objectives have been identified:  

1. Investigate the optical effects of heat treatment on ATO sol-gel thin films.   

This is to reduce the error in data efficiency while using the chosen 

methods of characterization - FTIR, SEM-EDS, and Raman spectroscopy.  

This process was used to obtain baseline data of the sol-gel chemical 

composition and imaging and confirm with previously reported data.  

2. Examine the optical effects of heat treatment on ATO(0.1%Co2O3).   

This step was also done to examine the sol-gel coating as a thin film to 

determine optimal heat treatment levels as well as maximum possible 

reflectivity.  Fluctuation in optical parameters was observed at low doping 

levels of Co2O3.   
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3. Determine the angle-dependent reflectivity of the ATO(Co2O3) sol-gel coating on 

carbon fiber mats, and correlate the maximum reflectivity to the level of Co2O3 (0.2-

0.5%).   

The data obtained for this objective will solidify the presented results 

confirming the primary objective has been completed.  

Two sample preparation processes were used to accomplish the aforementioned 

goals.  For the thin film analysis, 20 μL of the sol-gel solution was spin coated on silicon 

and carbon/silicon substrates.  This sample setup was designed to compensate for the 

conformal surface of carbon fibers, yet it still allows characterization of the interaction of 

the sol-gel coating with a carbon surface.  The second sample setup used 3-inch carbon 

fiber mats immersed in the sol-gel solution and heat treated at specified temperatures of 

250 °C.  This was done to examine the effects of the sol-gel coating on a carbon fiber mat 

on a microscale and macroscale. 

 

1.5. Organization of the Dissertation 

 

A brief overview of the relative characteristics of carbon fiber composites, 

infrared lasers, and sol-gel applications for this project are presented.  Also, the 

discussion of the necessity of the data obtained and the goals and objectives of this 

research are discussed in this initial chapter.  

Chapter 2 provides a theoretical background on lasers and laser radiation, 

followed by a discussion on the current state of the art for infrared laser applications.  

Additionally, as a discussion of reflectivity is given, its relevance to this research and the 
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propagation of light through oxide materials are presented.  The theory and application of 

laser induced damage threshold experiments are discussed, and the selection of materials 

for this research are identified.  Additionally, previous, public-accessed government 

programs involving defensive laser ablation are discussed, and this information is used to 

express the necessity of this research.  

 Chapter 3 discusses the previous research that is vital to the success of this 

research.  Chapter 4 presents the results from ATO sol-gel coating of carbon fibers.  

Nanoscale investigations from chapter 2 and 3 are then compared to results on a 

macroscale. 

In chapter 5, the structural and composition effects of Co2O3 as a dopant in ATO 

sol-gel thin films are examined from a material science perspective.  The methodology of 

fabrication and quantitative testing parameters are discussed.  Chapter 6 presents 

reflectance and absorbance measurements of ATO(Co2O3) sol-gel coated carbon fibers. It 

is shown that these parameters fluctuate at different dopant levels when varying 

wavelengths, angle dependency, and temperature.   

Chapter 7 concludes the research effort, summarizing the results of the sol-gel 

coating and providing future directions of sol-gel coated fiber applications.  Additionally, 

dialogue on the implementation of the oxide coatings in other optical-based oxide thin 

film applications is presented. 
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CHAPTER 2  

 

LITERATURE REVIEW 

 

2.1. Theory of Lasers 

 

Optics is defined as the branch of physics which investigates the study of light 

and its behavior independently as well as its interactions with matter.  Optics also 

involves the study of the instruments used to direct, focus, or manipulate light.[34]  Light 

can be described as both a particle and a wave.  When discussed as a particle, light is 

formed by atoms in a medium being energized to an excited state.  Once these atoms start 

to lose energy, they descend back to their original state, emitting excess energy.  While 

this excess energy can be released in the form of heat, it can also be seen in the form of 

photons, or what we perceive as light.  When light is described as a wave, it can be 

described as an electromagnetic wave containing perpendicularly aligned electric and 

magnetic waves, which are also perpendicular to the wave’s direction of travel.  The 

equations in the following section have been further derived and referenced [34]. 

In 1923, Louis de Broglie discovered another vital relationship between energy 

and the speed of light.  It was found that a constant value, known as the Planck’s 

constant, could be used to represent the correlation of the momentum and wavelength of 
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a photon.  If the frequency of a wave is known, it was shown that the energy could be 

calculated from this equation:   

         
 

 
  

where E is energy, h is planck’s constant, v is frequency, c is the speed of light (3*10
8
), 

and λ is the wavelength.  Because of these founding equations, the following conclusions 

were also shown:  

 As frequency increases, the wavelength decreases 

 As frequency increases, the photon energy increases 

 As the wavelength decreases, the photon energy increases 

Longer wavelengths produce lower energies, while shorter wavelengths produce higher 

energies.  

The laser beam strength, or output power, can be determined by the average 

energy states of the conduction and valence bands divided by the difference in time (ΔT = 

T2-T1) the beam is emitted: 

     
  

  
 

The unit of measurement for power is watts, which are joules per second. From these 

emitted photons, other atoms are accelerated into excited states.  This chain reaction 

continues to take place until there are (theoretically) no more atoms in the ground state.  

The word “laser” comes from the acronym LASER, meaning light amplification of 

stimulated emission from radiation.  This is done on the molecular level by two types of 

emissions, spontaneous and stimulated. In spontaneous emission, a natural occurrence of 

atoms dropping to their lowest possible state is observed.  In stimulated emission, 



www.manaraa.com

15 

 

specified light waves of photon energies are used to illuminate and excite atoms to a 

higher energy state.  The atoms begin oscillating at the incident light wave’s frequency.  

This oscillation then in turn amplifies the original light wave.  The ratio of atoms in 

different energy states (N2/N1) is exponentially proportional to the difference in energy 

states (E2-E1) divided by the product of Boltzmann’s constant, kB and the temperature, T: 

  
  

      
     
   

  

This radiation of stimulated emission is possible by the regeneration of photons, or light.  

The wavelength, λ, of light is defined as the distance between two peaks of energy in a 

light wave.  The wavelength of this light is determined by the difference in energy states 

of the conduction and valence bands (ΔE = E2-E1):  

   
      

  
 

The wavelength of a laser source is dependent on the material, the optical system, and the 

energizing process.  Also, the spectra of wavelengths inside a laser beam determine its 

classification.  A monochromatic laser is single-colored and emits one specified 

wavelength, while a multiline laser contains 2 or more wavelengths in its beam.  The 

frequency, ν, is defined as the number of peaks per second (Hz). The correlation of 

frequency and wavelength is governed by the speed of light, c: 

       

From these governing principles, the ideas and invention of masers (microwave 

amplification by stimulated emission of radiation) was invented in 1951 by Townes and 

Schawlow.  The motivation behind the invention was the idea that a stable frequency 

source can be produced by utilizing a transition between the energy levels of an atom or a 
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molecule.  This invention was used in applications such as low-noise amplifiers for high-

sensitivity radar radio telescope.  Masers were the predecessors to lasers, which now rank 

as the highest-performance devices for frequency standards.[2]  The first laser was 

invented in 1960 by Maiman.[3-4]  In his development, he used a ruby as the laser 

medium and discussed the fluorescent relaxation processes, the ground-state population 

changes due to optical excitation, and the detection of optical absorption between two 

excited states.  From his efforts, many other research groups designed lasers of different 

medium materials and produced lasers of both pulse and CW.[5-7]  

Lasers can operate in two modes, pulsed or continuous wave (CW).  The main 

difference between these modes is the maximum possible average power provided to the 

sample or specimen of interest.  For instance, Nd:YAG lasers can operate at 40 to 60 

watts in pulse mode.  However, the same laser can only operate at ~10 watts in CW 

mode.  The reason for this effect is because pulsed lasers have the capability to cool 

down in between exposure.  Depending on the rate of pulse, pulse lasers can easily be 

mistaken for CW mode lasers. 

 There are various groups of lasers, such as gas and liquid lasers, solid-state lasers, 

and semiconductor lasers.  These lasers are grouped by the materials used in the medium 

and their process of producing a laser. 

 

2.2. Infrared Radiation 

 

From derivation of Maxwell’s equations, the function of an electromagnetic wave 

(i.e., light) can be defined as:  
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where ω is the angular frequency, t is the time interval, n is the refractive index, c is the 

speed of light, and z is the wave impedance.  The squared wave impedance of a medium 

is proportional to the dielectric permittivity divided by its magnetic permeability:  

 

 
        

 

 
   . 

The function Ex states that an electromagnetic wave can be transmitted through a material 

with an associated electromagnetic field of period nz/c and with an exponential 

absorption of e
-ωkz/c

.[8]  Figure 2.2.1 shows the interaction of an electromagnetic wave 

with a surface.  

 

 

 

 

 

Figure 2.2.1. Reflected and transmitted waves from an incident wave at a surface. 

 

From figure 2.2.1, it is seen that the field vectors for each set of waves are continuous. 

Because Ey/Hx = z, E′y/H′x = z′, and E″y/H″x = -z, Poynting’s vector law is then proven 

and the propagated energy in the wave is  

Incident 

wave 

Reflected 

wave 

Transmitted 

wave 
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The proportion of reflected energy is defined by:  

         
 , 

and the transmitted energy is equated by:  

  
     

        
 

 

2.3. Theory of Thermal Infrared Reflectivity 

 

The design of an infrared reflective coating is governed by multiple theorems and 

models.  In such, two key phenomenon have been identified in the fabrication process.  

First, the heat treatment temperature (also known as the sintering or annealing 

temperature) alters the crystal lattice alignment as well as the atom placement.  This has 

been proven in literature through numerous experiments.  Secondly, the charge carrier 

density and thermal emissivity are changed by way of the applied heat treatment.  

Previous experimental results show the optical and thermal affects of doping 

concentration.  In understanding the complex atomic interactions that occur at the surface 

level, a discussion on the governing equations and models is given. 

In everyday life, we see the exchange between the color of a surface and the heat 

it emits to its surrounding.  This is commonly seen in items such as ignited fire wood, 

light bulbs, or stove heating elements.  This observation shows two effects of thermal 

radiation based on its appearance and how it affects its surroundings.  The amount of 
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emitted radiation is directly proportional to an object’s temperature, hence the 

explanation to the examples given.  

  

 

Figure 2.3.1. Blackbody photon energy with extensive (q = 1) and nonextensive (q = 0.95 

and 1.05) statistical mechanics.[35] 

 

Blackbody radiation is used to describe the electromagnetic radiation within or 

surrounding an object in thermal equilibrium with its surroundings.  The foundation of 

the radiation laws are derived on the assumption that the object under observation is in a 

surrounding environment at a blackbody temperature.  Planck’s Law of Radiation defines 

the intensity of emitted radiation from a unit surface area as a function of wavelength for 

a fixed temperature: 
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where h = 6.626*10
-27

 erg*sec, k = 1.38*10
-16

 erg/K, and c = 3*10
8
 m/sec.  As shown in 

figure 2.3.1, as the temperature increases, the peak shifts toward shorter wavelengths. 

In an effort to describe these peak shifts in Planck’s Law, Wein’s Law and the 

Stefan-Boltzmann Law are derived.  Wein’s Law states that the peak wavelengths in the 

distribution of thermal radiation can be calculated by 3*10
7
 divided by the temperature, 

T: 

     
     

 
 

while the Stefan-Boltzman Law gives the blackbody energy at all observed wavelengths: 

       

Two types of reflection can occur.  Specular reflection occurs from radiation on 

smooth surfaces, while diffuse reflection occurs from radiation on rough surfaces.  It can 

be shown through reflectance experiments that most materials contain both a specular 

component and a diffusion component.  The specular component of a material is wider 

when reflection is given from a smoother surface at a specific angle.  The diffusive 

component takes place at a wider range of angles, which makes it more common in 

reflective measurements.  However, some systems calculate and correct measurements, 

removing or separating the specular component out of the reading.  This is performed to 

better evaluate the reflectance components independently without merging the two 

components together, which may then cause discrepancy where an increase in reflectance 

is seen.  
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When discussing interactions of light with matter, there are three distinctive 

classes of objects: 

1. transparent – objects capable of transmitting light 

2. opaque – objects that absorb light 

3. reflective – objects that reflect light 

While these classifications are used, it is known that there is no one true material to any 

group, as all materials transmit, absorb and reflect some percentage of light.  However, 

materials are labeled as such based upon the dominating effect of radiating light in a 

specified spectrum.  For instance, tin oxide is a well known material that is transmittal in 

the visible range, absorbent in the ultraviolent (or UV) range, and reflective in the 

infrared (or IR) range.[28, 36-39]   

The basic law of reflection states that the incident angle is equal to the angle of 

reflection.  It is also known from the derivation of Fresnel’s equations of reflectivity that 

reflectivity coefficients can be calculated from the transmission coefficients:   

               

Therefore, in the collected transmission data, reflectivity components can be calculated.    

Reflectivity is defined as a  

of radiant flux reflected divided by the incident radiant flux:  

  
  
  

 

whereas spectral reflectance factor (R), or reflectance in relation to a specified 

wavelength, is defined as the ratio of spectral flux reflected from an object (Φs)to the 

spectral flux reflected from a perfect diffuse (lambertian) reflector (Φo): 
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We then take the preceding definition of reflectivity to derive the Stefan-Boltzmann Law.  

In calculating all reflectivity at a specific wavelength, it is shown that  

             
 

 
  where     

 

 
  

  

  
  

  

 

 

  
      

  

It is seen that:  

    
   

 
  

  

  
  

 

           
   

 

 

 

Substituting x for 
  

    
 , λ then becomes  

 

 
  

  

    
 , and dλ goes to –  

  

  
  

  

   
  .   

So: 

   
   

 
  

   
 

   
   

    

    
 

 

 

   
   

 
  

   
 

   
  

    

  
  

It is seen now that:  

   
      

  

      
 , and, therefore        

In essence, the Wein’s Law explains the peak shifts in wavelengths, while Stefan-

Boltzmann Law explains the rate of growth in temperature.  The Stefan-Boltzmann Law 

also shows that the thermal emissivity of a material affects its infrared reflectivity. 

 

2.4. Laser-induced Damage Threshold Theory 

 

The purpose of laser induced damage threshold experiments are to investigate the 

surface roughness, dielectric breakdown, and surface temperature effects of a specified 

material having undergone direct radiation from a radiation source, typically a medium or 
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high power laser.  This is of interest to the Air Force Research Laboratories (AFRL) for 

current undisclosed military applications.  In general, the breakdown time in correlation 

with the applied laser power in both instances of pulse count and duration time is of 

interest.  This information is to assist in the design of a thermal infrared reflective coating 

for carbon fiber composites.  Furthermore, the information obtained from this report will 

contribute to the body of knowledge for such materials in multiple applications such as 

optoelectronics, transparent conductive oxides for solar cells, and light emitting diodes.  

Laser-induced damage threshold (LIDT) is defined as the highest fluence for which no 

damage has been observed.   

ATO is transparent in the visible spectra, absorbing in the UV spectra, and 

reflective in the near infrared range (0.7 – 1.2 μm).  The increase in heat treatment 

temperatures will decrease defects and dislocations in the sol-gel coating’s stoichiometry.  

A Nd:YAG laser of 1064 nm (1.064 μm) pulsing at 10 ns with a beam width of 100 μm 

will show that the LIDT will vary around 23 J/cm
2
.  The resin used to make the 

composite is predicted to be evaporated by the laser and to not alter the LIDT.  Heat 

treatments applied to the ATO(Co) sol-gel coatings alter their crystallography and optical 

parameters.   

 

2.5. Sol-gel Fabrication 

 

The sol-gel method consists of two commonly used methods, the all-alkoxide and 

alkoxide-salt methods, as well as a few unconventional approaches.[3, 20, 40, 41]  

However, all processes result in a homogeneous mixture of desired oxide components 
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that are made at low temperature and result in high quality films.  Also, the oxide 

precursors are soluble in organic solvents and easily convertible to the desired oxide 

material by way of a chemical, thermal or oxidative-based reaction.  In the all-alkoxide 

method, a metal material is paired with an alkyl group, and the valence state of the 

solution identifies the ionization of the metal.  These metal alkoxides are hydrolyzed to 

produce the specified oxide.  The chemical reaction is denoted in empirical formula 

notation as:  

 

                            

                     

M is the metal, R is the alkyl group, and x is the valence state of the metal.  ROH is an 

aliphatic alcohol that can be removed from the solution by way of drying at temperatures 

at or above room temperature.   

More alkoxides in the solution present complexity into the sol-gel formation.  In 

certain hydrolysis with alkoxides, such as silicon and phosphorous, the hydrolysis rate is 

faster than common hydrolysis rates of other alkoxides.  This leads to possible non-

homogeneity.  In order to slow this process, the alkoxide is produced in a rate-slowing 

solvent before being exposed to atmospheric pressure.  Adding this step into the process 

could slow down gelation of a solution to days or even weeks before complete formation. 

The second most commonly used sol-gel fabrication method is the alkoxide method.  

This approach allows solid metals of low solubility to be formed into sol-gel thin films.   
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Elements, such as Group I and Group II, present difficulty when trying to obtain pure 

forms to prepare under complex preparation procedures.   

So, metal salts are used in a similar chemical reaction.  However, the formation of 

the specified metal oxide is dependent on thermal or oxidative decomposition.  The 

overall process involves using metal salts in alcohol or water solutions to alkoxide 

mixtures for hydrolysis.  Based on the chemical reactions, this causes uniform dispersion.  

If the reaction rate is still too fast, previously mentioned techniques for alkoxide solutions 

can also be used in this approach.   

 

2.6. Characterization Methods 

 

2.6.1. Surface Morphology Imaging – Scanning Electron Microscopy 

Scanning electron microscopy (SEM) was used to image the surface of the sol-gel 

thin films and coatings on carbon fiber surfaces.  Figure 2.6.1 shows a Hitachi S800 

scanning electron microscope.  The fundamentals of this imaging technique involves the 

use of a high powered electron beam of up to 25 kV produced by a thermionic field 

emission gun/power source.  As the beam travels downward towards the sample, 

condenser lenses place a magnetic force upon the beam to uniformly focus its energy in a 

downward direction.  Next, an objective lens is used to focus the beam in a smaller 

dimension.  As the electrons strike the surface of the sample, secondary electrons are 

emitted from the sample surface.  As these secondary electrons are emitted, a everhart-

thornley detector collects some of the electrons and configures it to an electronic image.   
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Figure 2.6.1. Hitachi S800 scanning electron microscope. 

 

The type of material that is being examined emits specified energy levels of 

electrons.  A three dimensional surface can be seen by the level of energy being collected 

by the everhart-thornley detector.  Since the sample is placed in a vacuum environment, 

normal scanning electron microscopy standards require that the sample is non-liquid and 

conductive.  For materials such as polymers, the sample surface can be electrically 

charged by the electron beam.  To correct this issue, a lower voltage is used, preferably 5-

15 kV.  While this can allow minimal imaging, high resolution and high magnification 

parameters cannot be met on non-conductive surfaces.  For this research, the thin films of 

metal oxide sol-gels were conductive, and were examined at high resolution parameters.  

Because of this, high quality imaging of the surface quality, mainly for surface roughness 
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and uniform coverage, was observed.  For imaging of the sol-gel coated carbon fibers, 

20-25 kV was used to compensate the charging effect on the carbon fiber surfaces, as 

electrons often penetrated the sol-gel surface. 

 

2.6.2. Composition Detection - Energy Dispersive Spectroscopy 

Energy dispersion is a technique that is performed with the scanning electron 

microscope.  While the electron beam causes secondary electrons to emit from the 

surface, characteristic x-ray electrons are also emitted.   

 

 

Figure 2.6.2. EDAX detector for energy dispersive spectroscopy. 

 

An EDAX detector is used to collect the x-ray electrons and work coinciding with 

manufactured software to identify the specific elements present in the sample.  Figure 

2.6.2 shows the EDAX detector connected to the Hitachi S800 SEM.  A two dimensional 
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plot is used to show the type of material and shell type of the electron energy versus the 

number of counts from that material.  The shell type can be identified by the known 

amount of energy required to break the electron away from a specified level of orbit.  

This information is beneficial to those in the materials science, chemistry, or physics 

field, where the examination of electron interaction is vital.  

 

2.6.3. Optical Response – Raman Spectroscopy and Fourier Transform Infrared 

Spectroscopy 

Raman spectroscopy is used to investigate the elastic and inelastic scattering of 

incident infrared light from the crystal lattice of atomic structures.  This characterization 

method can be used to identify chemical bonds of known materials at specified 

wavelengths of reflection and wavenumber shifting.  Once the incident laser is absorbed 

at a specific wavelength, a photon is emitted at a longer coinciding wavelength.  The 

chemical bonding is then verified with the decay of excitation states relevant to that 

material.  There are two common forms of plots shown from Raman spectroscopy.   

Generally, the plotting of Raman spectroscopy data shows the wavenumber of 

incident infrared light versus the percentage of reflectivity.  However, depending on the 

application and focus of research, the data can be plotted to show the loss (anti-stokes 

scattering) or gain (stokes scattering) of energy.  Figure 2.6.3 shows the Horiba HR800 

Raman spectrometer.  Similar to Raman spectroscopy, fourier transform infrared 

spectroscopy (FT-IR) is also a technique founded upon the study of radiated light 

interaction with materials.   Infrared photons cause chemical bonds to stretch and bend.  
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Characteristic frequencies are based upon the transition between quantized vibrational 

energy states.  Figure 2.6.4 shows an FT-IR. 

 

 

Figure 2.6.3. The Horiba HR800 Raman Spectrometer. 

 

 

Figure 2.6.4. Nicholson 6700 FT-IR system. 
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FT-IR can cover the near, mid, and far infrared ranges (10-14000 cm
-1

).  A typical 

FT-IR system contains a Nd:Yag laser of 1.064 µm wavelength.  Inside, a Michelson 

interferometer set up is used to reflect the light through or off of the sample and detect 

the vibrations of the crystal lattice.  There are four modes of FT-IR: 1) transmission, 2) 

specular reflection, 3) diffuse reflection, and 4) attenuated total reflection (ATR).  For our 

samples, ATR was chosen as our characterization method.  This was selected because the 

samples were tested with little or no modifications for sample preparation.   

Also, in ATR modes, the infrared light is allowed to pass through the sample 

multiple times before being collected by the detector.  The only setback from ATR is the 

data may not be accurate if the sample is not in close contact with the background crystal.  

However, to compensate for this possible error, our testing was verified through multiple 

runs.  In plotting FT-IR data, percent reflectance versus the wavenumber is commonly 

used.  From this, chemical bonds at specific wavelengths can be identified by drops and 

slopes in the percent reflectance.  Chemical bonds are then identified with previous plots 

of FT-IR data conducted on similar material.  

 

2.6.4. Hemispherical Integrated Reflectance - Spectroradiometer Spectroscopy 

This unique reflectance test is done with a spectroradiometric measurement 

system.  Figures 2.6.5 shows the hemispherical integrated reflectance spectroscopy 

system, while figure 2.6.6 shows the schematic drawing of a Gooch and Housego OL 

740-70 integrating sphere reflectance attachment.  Figure 2.6.7 provides a look at the 

circuitry inside the infrared light source.  In detail, the sample is placed at a flat opening 
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of a sphere.  Inside this sphere is 99.999% reflective material that reflects the light 

throughout the sphere and onto the sample.  A detector, also located inside this sphere, is 

placed at a 10 degree angle referenced to the sample. 

 

 

Figure 2.6.5. Gooch and Housego OL Series 750 Spectroradiometric Measurement 

System with an OL 740-70 integrating sphere reflectance attachment. 

 

The detector then examines how the reflectance changes once a sample is used to close 

the sphere.  Also, during our testing, a “blackout” cloth was placed over the entire system 

to eliminate or minimize random light interference.  For our measurements, 99.9% 

reflective spectralon SR99 was used as the reference reflectance material.  This is a 

calibration standard for reflective measurements.  An additional attachment could also 

remove the specular component of reflectivity from the measurements.  However, for our 

sample testing and application purposes, the specular component was included.  This was 

done to simplify testing methods and calculation, as total reflectivity is used when 

calculating the absorption.  With this system, measurements can be taken from 200 nm to 
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2.5 µm wavelengths, and sample sizes can range from 1 inch in diameter to 2 x 4 inches.  

However, for our testing in the thermal infrared range, a gold coated integrating sphere 

attachment enables 10-degree hemispherical reflectance measurements to be made from 2 

to 15 um wavelengths. 

 

 

Figure 2.6.6. Schematic drawing of a Gooch and Housego OL 740-70 integrating sphere 

reflectance attachment. 

 

 

Figure 2.6.7. Hemispherical Spectrometer infrared bulb source. 
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2.6.5. Angular-dependent Bi-static Transmittance – Enhanced FT-IR Spectroscopy 

The bi-static transmittance system is a patented system by Dennis Goldstein, 

Ph.D. (U.S. Patent Number 6,618,145) that involves a bio-rad FTS 6000 FT-IR system, a 

rotating detector, and standard optics mounting equipment.  In this setup, measurement 

testing ranges from 0.7 to 10 µm.   While the application purposes relevant to this 

research required a bi-static setup, the rotating detector allows monostatic setup 

capability.  Figure 2.6.8 shows the bi-static transmittance setup.  In the accompanied 

software, steps between each µm wavelength and wavelength range are specified.  The 

Nd:Yag laser in the FT-IR system is used as the laser source.   

 

 

Figure 2.6.8. Bi-static fourier transform infrared spectrometer setup. 

 

Screens are placed in front of the FT-IR source to compensate for attenuation.  The 

detector has a rotation range of 0 – 100 degrees.  Because of the rotation of the detector, 
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the sample size requirement is 3 inches in height and 3 – 5 inches in width.  This is 

because the beam diameter stretches from circular to an oval shape when the detector 

rotates ±45 degrees.  The data is collected by the software and exported into excel file 

text data.  Similar to FT-IR spectroscopy, both transmittance and reflectance data are 

plotted versus the wavelength.   

 

2.7. COMSOL Simulations 

 

In an effort to characterize a predict model for the composites, a finite element 

analysis simulation software, COMSOL, was utilized.  The finite element analysis 

simulation models were modified from examples listed in the software documentation. 

[49] The components in the original module are contained in a chamber with 

temperature-controlled walls with a set point of 400 K. The result is results in a closed 

cavity allowing one to control the surrounding environment.  Furthermore, the model 

assumes that this physical system is dominated by radiation and convection cooling. The 

convective cooling of the oxide layer and sensor to the gas (at 400 K) is modeled using a 

heat transfer coefficient, h (in this example set to 20 W/(m2·K)).  The problem is 

governed by the heat equation, given below together with its boundary conditions: 
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where ρ is the density; k denotes the thermal conductivity; Q represents the volume heat 

source; n is the surface normal vector; T(inf) equals the temperature of the convection 

cooling gas; ε denotes the surface emissivity; J0 is the expression for surface radiosity 

and κ is the Stefan-Boltzmann constant. 

 



www.manaraa.com

36 

 

 

 

 

 

 

CHAPTER 3  

    

BACKGROUND 

 

3.1. Metal Oxide Coatings for Carbon Fiber Composites 

 

The interaction of lasers with carbon fiber composites are of vital interest for 

multiple military applications.  Initial research on electromagnetic interference (EMI) 

shielding incorporated heavy metal sheets into the body frames of aerial vehicles and 

missiles.  As mentioned previously, carbon fibers were implemented into aerial vehicle 

and missile design because of their high strength to weight ratio, low density, and 

electrical conductivity.  Because of new applications and heavier cargo, a lighter frame 

increases the flight time and reduces the amount of required power for takeoff and flight 

stability. Also, as new optical threats emerged decreasing successful mission efforts, 

advanced techniques were developed to counteract these methods of infiltration. From 

this, metal oxide coated carbon fibers were used in replacement of the heavier EMI metal 

frames.[42-47]  The basis of the implementation of infrared reflective coatings is to 

reflect infrared light and uniformly distribute the heat across a carbon fiber composite 

surface.  Another common application is microwave absorbing coatings for 

electromagnetic interference (EMI) shielding.  Specific metal oxides are selected for 

these applications because of their absorption in the UV range and high reflectivity in the 
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near and mid infrared ranges.  In the case of microwave EMI shielding, transmission and 

reflection coefficients through a coaxial system is measured and compared in decibels. 

[42-47]  Higher reflection and lower transmission is desirable.   

For infrared reflectivity, metal oxide coatings for applications such as solar 

windows and laser lenses were incorporated into the design of carbon fiber composite 

systems.  The lower resistivity for the thicker film indicated a change in the 

microstructure, such as larger grain size and/or different properties at the grain 

boundaries. At wavelengths up to those where the reflectance increases strongly, the 

theory for ionized impurity scattering and the Drude theory are equally successful in 

reproducing the experimental data.  However, at longer wavelengths, the Drude theory is 

superior. This is because the infrared reflectance basically depends on the DC resistivity, 

and since the measured ρ(dc) was used as an input parameter in the Drude calculations, a 

good agreement is, in fact, expected.  In the case of ionized impurity scattering, however, 

the resistivity in the infrared region was obtained as a result from the calculations, and it 

turns out that ρ
IIS
(ω) is lower than the measured ρ(dc) for all investigated films.  Many of 

these metal oxides were tested for their dielectric breakdown and laser induced damage 

threshold.  

 

3.2. Metal Oxide Coating Deposition Methods 

 

Metal oxides can be deposited in various techniques, such as electroplating, 

chemical vapor deposition, electron beam evaporation, and dip coating [26, 31, 48-54].  

However, control over the thickness and uniform surface coverage can only be achieved 
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with some percent error or difference, depending on the surface area size.  In the majority 

of the previously mentioned deposition techniques, the substrate is usually heated or 

given a potential or charge difference to promote a successful uniform deposition.  As 

discussed later in this chapter, in the case of cobalt, a heat substrate usually gives a 

smoother surface for deposition.  Therefore, cobalt oxide exhibits better magnetic 

properties, such as coercivity, when deposited on a smoother surface.  Also, a post 

annealing and heat treatment is given to most deposited metal oxides to: 1) assist in 

providing uniform coverage of the deposited material, 2) remove low concentrations of 

surface contaminants, and 3) further enhance the electrical, magnetic, and/or optical 

properties. 

 

3.2.1. Electrochemical – Nanoparticle/Sol-gel Coating 

Sol-gel coatings are the most commonly used in fiber coating techniques.  Sol-gel 

solutions are typically deposited by method of immersion or dip coating.  Also, like 

electroplating solutions, sol-gel fabrication allows complex materials to be added in 

controlled doping levels, which is very cost efficient when compared to other deposition 

techniques like CVD or sputtering.  In both electroplating and immersion processes, after 

the sol-gel deposition, the acid or glycol used in the hydrosol solution is reacted with the 

nitrate or acetate through the chemical reaction process.  Next, the annealing process is 

performed to activate chemical reactions in the coating solution.  Since carbon fibers 

have high thermal stability, reaching towards 2000 °C (depending on which polymer is 

used to reinforce the carbon), it can easily withstand required annealing and heat 

treatment temperatures.  This causes the acid to evaporate and create a byproduct residual 
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resulting in the uniform dispersion of the desired material on the fiber surface.  Resulting 

dispersion can be verified via the combination of scanning electron microscopy (SEM) 

and energy dispersive x-ray spectroscopy (EDS). 

Recent research initiatives have implemented nanoparticles into fiber reinforced 

composite systems.  This is done by dispersing nanoparticles in sol-gel solutions.  When 

not in bulk dry powder form, most oxide nanoparticles are developed and can be 

transported in a water-based solution.  Uniform dispersion of the nanoparticles into a sol-

gel solution is often done by ultrasonic dispersion.  Other methods include magnetic 

stirring and chemical reaction-based dispersion. 

 

3.2.2. Methods of Fiber Composite Coating Fabrication Techniques 

Cobalt oxide sol-gels are usually formed by beginning with cobalt acetate 

(base/salt) in an acid solution.  Drying temperatures are as low as 90 °C are used prior to 

annealing, and heat treatment temperatures range from 300-500 °C.  While this is known, 

the previously mentioned materials can be deposited in various methods, such as electron 

beam evaporation, sputtering, and atomic layer deposition.  However, there are various 

disadvantages that coincide with the advantages of using these deposition methods, as 

shown in table 3.2.1.  

Acetone is typically used to strip industrial-standard carbon fibers of any post-

manufacturing coatings that may be present and to clean the fibers for higher chemical 

reaction rates.  Because of this, some type of acidic solution is used to promote better 

adhesion at the carbon surface.  For instance, for electroplating oxalic acid is used to 

sensitize the carbon fibers, presenting more negatively charged ions at the carbon fiber 
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surface, thus promoting a higher quality of deposition.  For immersion, ammonia (HNO3) 

is used to introduce various functional groups, such as CO, OH, and COOH, at the carbon 

fiber surface.  It has been shown that the hydrosol solutions make better bonds at the 

surface if this step is included. 

 

Table 3.2.1. Advantages and disadvantages of currently used fiber coating techniques. 

 Advantages Disadvantages 

Radio Frequency (RF) 

Sputtering 

Uniform coating coverage 

(step coverage) 

Room and low temperature 

deposition conditions 

Requires high voltage and 

current conditions 

High cost for specified 

doped targets 

Atomic Layer Deposition Deep trench deposition 

capability 

Angstrom level coating 

control 

Not cost efficient 

No capability to incorporate 

ferromagnetic particles at 

low percentages 

Electron Beam Evaporation Thick coating coverage 

Metal and oxide deposition 

capabilities 

Requires high voltage and 

current conditions 

Unstable conditions for 

oxides 

Powder Coating Wide range of oxide 

materials 

Allows ferromagnetic 

particle incorporation (pre-

coating fabrication) 

Does not provide a stable, 

uniform coating suitable for 

large-scale composites 

Dip Coating (or Immersion) Wide range of oxide 

materials 

Allows ferromagnetic 

particle and other sol-gel 

incorporation (pre-coating 

fabrication) 

 Inconsistency in thickness 

across the sample surface 

 

Coating carbon fibers can be done by dip coating or immersion procedures.  Dip 

coating allows for sol-gel thickness control by optimizing the dipping rate of the sample.  

In such cases where the thickness cannot be simply measured by profilometer techniques, 

it can be calculated based on the rate of deposition, the type of sample, and cross-
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sectional area of deposition.  In the electrochemical approach, fibers are immersed in the 

sol-gel solution, depending solely on the surface chemistry of the sample and sol-gel 

interaction to uniformly deposit a sol-gel coating.   

The selected metal oxide sol gels have the ability to have the phase and/or band 

gap to be altered by the deposition procedure and heat treatment times and temperatures.  

This can have an adverse affect, as the mechanical properties of carbon fibers tend to 

degrade at temperatures above 400 °C.  However, for instance, previous research reports 

that optimal crystallinity of TiO2 is reached at 400-450 °C, while SnO2 at 450-550 °C.  

Therefore, an optimal temperature is to be examined for maximum crystallinity in sol gel 

deposition with minimal carbon fiber mechanical degradation.  While previous research 

has confirmed the mechanical and thermal properties of carbon fiber reinforced 

composites, no previous research has examined the thermal, mechanical and optical 

enhancements of metal oxide sol-gel coated carbon fibers. 

 

3.3. Selection of Materials for Application 

 

In the materials selection process, it was advantageous to be mindful of the 

currently used procedures used to make carbon fiber reinforced composites.  In doing so, 

research on the possible fabrication techniques were reviewed and taken into 

consideration during the selection process.  From these pioneering research 

advancements, other techniques have been developed such as compression, resin transfer 

molding (RTM), and, in particular, vacuum-assisted resin transfer molding (VARTM).  

As mentioned earlier, composites have a wide range of applications, ranging from aircraft 
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frame components[9], nautical automobile frame components[55], and aerospace 

vehicles.[4]  While all of the composite fabrication techniques share similarities, the 

VARTM procedure is of interest because: (1) it places the laminate under vacuum 

lowering chances of air pockets; (2) it has a high rate of uniform resin distribution; (3) it 

has a low cost in tooling expenses; (4) the process does not require high heat or pressure, 

and (5) it is a simple, one-shot process for large, complex parts.  Figure 3.3.1 shows a 3 x 

5 inch carbon fiber composite fabricated by the VARTM method.  

 

 

Figure 3.3.1. 4-ply carbon fiber composite. 

 

From the evaluation of the commonly used technique to create carbon fiber 

composites, it was decided to use the sol-gel solution/precursor immersion process as the 

preferred deposition method.  Selecting the sol-gel deposition gives multiple advantages 

that can easily be used for deposition purposes as well as implementation into the 

VARTM process.  Also, from the conducted literature search, there is limited research 
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that has examined thermal and optical parameters of metal oxide sol-gel coatings 

specifically for infrared reflectivity on carbon fibers.   

Oxides such as niobium, chromium, copper, titanium, and tin exhibit transparency 

in the visible range, absorption in the UV spectra, and reflectivity in the infrared range.  

Table 3.3.1 lists some parameters for commonly used oxides for infrared reflective 

coatings.  It is the recombination of the ions in the crystal lattice with oxygen charge 

carriers that causes this phenomenon.  Also, in perspective of the deposition method, the 

grain boundary size can be altered by applying heat at minimal temperatures for specified 

times.  It is from this characteristic that the reflectivity, transmittance, or absorption of 

these oxides can be increased.  Applications such as medium and high power laser lenses 

and solar reflecting window panes take advantage of these intrinsic properties.  Many 

metal oxide sol-gel solutions such as tin oxide (SnO2), titanium dioxide (TiO2), 

chromium oxide (Cr2O3), and aluminum oxide (Al2O3).  Sb-doped SnO2 (ATO) have 

been proven to have high conductivity, low resistivity, high transparency in the visible 

range, and thermal infrared reflective (TIR) properties.[23, 25, 56-61]  

In the transparent conductive oxide (TCO) research, many oxides, both simple 

and complex, are being produced in an effort to modify and control certain application-

dependent properties.  These properties may range from visible transparency, infrared 

reflectivity, and electrical conductivity (both AC and DC) to thermal conductivity and 

dielectric breakdown limits.  Thermal collectors are a common application for transparent 

conductive oxides.  The success of these materials in this application specifically is 

derived in the capability of absorbing solar light at specified wavelengths.  In order to 

modify and control the selectivity of the absorbed spectrum, TCO’s are being combined 
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with other elements such as fluorine (F), chromium (Cr), gallium (Ga), and molybdenum 

(Mo).   

 

Table 3.3.1. Comparison of electrochromic materials. 

 Sb-doped SnO2 Cr2O3 (undoped) TiO2 (undoped) 

Optimal 

Annealing 

Temperature 

(K) 

723 873 673 

Band Gap 

Energy (eV) 

~3.6 ~3.4 3.0 – 3.2  

Reflectivity 

Spectral 

Range (nm) 

620 – 640  2500 – 2600 388 – 413  

Heat 

Treatment 

Range 

450 – 550 350 – 400  400 – 450  

Beneficial 

Parameters 

Mid and far-range 

infrared reflectivity, 

oxidative resistant, 

band gap controlled by 

heat treatment and 

doping level. 

2435 K melting 

temperature, oxidative 

resistant, mid-range 

infrared reflectivity 

Near and mid-range 

infrared reflectivity, 

band gap controlled 

by heat treatment 

Applications Solar cell layers[62], 

optoelectronics [63, 

64]]  

Thermal coatings [65], 

solar energy 

collectors[66] 

Optical and electronic 

devices[67] 

 

A typical transmission range where a TCO performs efficiently is 0.4-15 µm.  

This is because, for shorter wavelengths, the transmission is dependent to the electron-

interband transition.  For longer wavelengths, a higher amount of light is reflected due to 

the plasma edge of the materials. In the visible spectrum, indium oxide is among the most 

commonly used materials in solar applications.  Indium oxide has been used as a dopant 

to SnO2 in many applications such as gas sensors, fuel cells and solar cells.  The success 

of indium oxide in solar cell applications comes from its photon recombination 
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capability, allowing more electrons to pass through it surface, compensating for photons 

that are lost as heat or reflected due to low energy.  In gas sensor applications, indium can 

combine with a range of molecules at the surface, allowing the detection of multiple 

molecules to occur.   

As compared to ATO, it has higher electrical conductivity, resistivity, and 

reflectivity in the visible spectrum.  Despite its success in visible spectra TCO 

applications, recent research has been performed to verify ATO as a replacement to 

indium tin oxide, or ITO.  One of the main motives behind these efforts are the non-

environmental friendly fabrication process and inefficient production cost related to ITO.  

In addition, elements, such as niobium (Nb) and copper (Cu), can be used as infrared 

reflective materials.  This is dominantly because of the unique properties of pure SnO2.  

While elements such as niobium (Nb) and indium (In) are used to dope SnO2, 

calculations of the lattice parameter and grain size resulted in antimony (Sb) having a 

larger amount at low doping percentages.  When in particle formation, the doping levels 

must be increased to create smaller crystallites, due to crystal growth suppression during 

calcination.[68, 69]  However, through an intensive literature search, these results 

compared to the bulk material analyses have yet to be reported.   

In recent research efforts, it has been shown that the combination of metal oxide 

sol gel with paramagnetic and ferromagnetic materials increases the uniform coverage 

and the infrared reflectivity.[38, 60, 70-72]  In previous research, paramagnetic materials, 

such as tungsten and magnesium, and ferromagnetic materials, such as cobalt and iron, 

are added to metal oxide sol-gel solutions, such as chromium oxide and tin oxide.  These 

materials are added in low concentrations to increase the magnetic properties as well as 
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enhance the infrared reflectivity.  This is shown in sol-gel depositions by the 

investigation of the post-processing heat treatment.   

It was presented by Xu et. al. [44] that Fe3O4 nanoparticles dispersed in a ferric 

hydrosol, or sol-gel solution, can be used to coat carbon fibers under vacuum pressure.  In 

previous research, ferromagnetic oxide nanoparticles of 10-30 nm have been integrated 

into sol-gel solutions via magnetic stirring at temperatures below 40 °C.   The immersion 

process was done several times with the annealing temperature at 120 °C.  The optimal 

heat treatment temperatures were achieved at 300-550 °C.  Previous research has shown 

the reflectivity of cobalt oxide sol-gels is not dominantly dependent on the heat treatment 

temperatures.  However, the reflectivity of tin oxide sol-gel has been proven to be heat 

treatment temperature dependent in between 100-500 °C.  Tin oxide has been used in 

multiple applications, such as solar cell junctions, optoelectronics, gas sensing, and 

electrochromic applications.  It has proven to be a viable material for multiple 

applications because of its electrical conductivity, crystalline structure, visible light 

transparency, ultraviolet light absorption, as well as near and mid infrared reflection 

capabilities.[39, 73-75] 

As previously stated, tin oxide has been doped with other materials, such as 

indium and fluorine, for many similar applications as antimony.  However, for cost 

efficiency, better electronic structure pairing, and higher optical performances, antimony 

has been consistently chosen as the best material to dope tin oxide.  While tin oxide has 

paramagnetic properties, antimony is diamagnetic.  A material is defined as paramagnetic 

when the net magnetic moment is partially aligned in the direction of an applied magnetic 

field, and each atom acts as an individual magnet in a field.  Comparatively, a material is 
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diamagnetic when the property of the orbital motion independently belongs to the 

individual electron in a field.  This effect leads to negative susceptibility, or the lowering 

of the net moment in the material as an external field is applied.   

Diamagnetism is only observed when the atom does not have a net spin or orbital 

moment.  This causes weaker effects than paramagnetic materials.  However, 

paramagnetic impurities often mask diamagnetic effects.  This effect can commonly be 

seen in research such as electron paramagnetic resonance studies.  It has been reported 

that higher doping levels of antimony increases the optical band gap, causing more 

interaction in the near and mid infrared region.[25, 27, 63, 76-79]  Antimony causes this 

effect by increasing the amount of electrons in the conduction band and occupying vacant 

tin lattice sites.  Concurrently, in ATO, while oxygen atoms migrate throughout the 

crystal lattice structure, antimony ions (particularly Sb
3+

) migrate to the surface, 

increasing reflectivity and charge carrier concentration.  

Mishra et. al. calculated the electronic band structure of antimony-doped tin oxide 

using the self-consistent-field scattered-wave molecular-orbital cluster approach.[80]  

From their results, it was concluded that conductivity could increase by way of thermal 

excitation.  Therefore, their conclusions indirectly verified that the sol-gel annealing/heat 

treatment temperatures could be used as a conductivity tailoring mechanism.  In previous 

research, magnetic oxide materials have been used for various applications, such as 

infrared reflective enhancement, microwave absorption, and mainly utilization of their 

intriguing magnetic-based properties.  With all of the literature and research done on all 

of the ferromagnetic materials, a simple question arose, “Why chose cobalt oxide over 

iron oxide?”  Table 3.4.1 lists some of the atomic characteristics of both materials.  With 
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such a close comparison, the two materials perform slightly different, depending on the 

application.  In this section, a discussion is given on why cobalt is a better candidate for 

this application.  Next, ferromagnetics and their interaction in the near and mid infrared 

range are discussed.  Also, cobalt’s optical and thermal roles in the success of this 

research are discussed.  

 

3.4.  Ferromagnetic Oxides for Infrared Reflectivity Enhancement: Cobalt vs. Iron 

 

Ferromagnetism in metals, i.e. the long range order of electron spins, must be 

reflected in the Fermi surfaces. They are split in a majority (spin up) and a minority (spin 

down) surface. The exchange interaction that lifts the spin degeneracy of the electronic 

bands translates in an analogous splitting in k-space. Above the Curie temperature a 

ferromagnet becomes paramagnetic and loses the ability to maintain a macroscopic 

magnetization. Therefore, the k-space volume that is enclosed by the two Fermi surfaces 

must be the same for spin up and spin down electrons. This is achieved if the exchange 

splitting of the bands that cross the Fermi level vanishes. It does, however, not mean that 

any magnetic moment disappears but that there is no more long range correlation 

between the magnetic moments on the lattice sites.  Photoemission is able to observe the 

disappearance of the band splitting as well as local correlation effects above the Curie 

temperature, as they were observed with neutron scattering or core level 

photoemission.[81] The magnons, or spin waves, in the magnetic material cause a 

spatially periodic modulation of the permittivity of the medium, and the light is scattered 

by the permittivity fluctuations.   
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Table 3.4.1. Properties of iron and cobalt. 

  

  

Iron Cobalt 

Atomic Number 26 27 

Mass 55.85 58.93 

Electron Configuration 3d
6
4s

2
 3d

7
4s

2
 

Melting Point (°C) 1530 1495 

Boiling Point (°C) 2862 2927 

Density, g cm
-3

 7.87 8.90 

Electrical Conductivity
e
 16 25 

 

The electronic structure for iron and cobalt is shown in table 3.4.2.  In terms of 

the electron structure, iron has a (3d
6
, 4s

2
) electron structure, while cobalt has an electron 

structure of (3d
7
, 4s

2
). The distribution of the electrons in the 3d and 4s shells are a 

function of their distance from the nucleus. Note that with the 3d electrons, the density of 

states is dense and close to the nucleus.  The 4s electrons on the other hand, are spread 

out rather thinly and extend far from the nucleus where they can overlap orbitals of other 

atoms. For the case of iron, part of the electrons in the 4s band is transferred to the 3d 

band because of the overlap of the two bands. However, since the 3d+ band is already 

full, the excess electrons must go into the 3d- band reducing the net moment.  The 

electronic distribution is important in this project because crystallography determines the 

degree of difficulty for for photons, or excited electrons to pass through the material.  
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Table 3.4.2. Electronic structure for iron and cobalt. 

 Number of electrons in Following shells  

 3d+ 3d- 4s+ 4s- Total 

Iron 4.8 2.6 0.3 0.3 8 

Cobalt 5 3.3 0.35 0.35 9 

 

Cobalt oxide sol-gel thin films have been fabricated by various groups.  From 

these experiments, it was shown that thicker layers provide higher crystallinity.  As 

shown in chapter 4, this enhancing crystallinity effect is independent of annealing 

temperatures in the range of 100-500 °C.  Concurrently, when used as a dopant at a 

constant thickness, cobalt oxide enhances the crystallinity of the sol-gel material prior to 

annealing/heat treatment.  However, consequently, when thickness is a constant, there is a 

maximum limit to its crystallinity enhancing effects.  It was reported by Drasovean et. al. 

that grain growth is observed by increasing the thickness and sol concentration [82].  

Also, validation of direct and indirect transitions has been presented through X-ray 

diffraction, transmittance spectroscopy, and Swanepoel’s calculation method of optical 

absorption and band gap energy differences.  It has also been reported that the heat 

treatment atmosphere can be used to tailor the absorption coefficients.  In the experiments 

conducted by Wang et. al., a nitrogen annealing environment was provided to cobalt thin 

films deposited by the spin coating method.  Samples annealed at 300 – 600 °C were 

compared to samples annealed at 300 °C in nitrogen, both at atmospheric pressure.   
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By controlling the annealing environment, a reduction of oxygen and phase 

transition of Co
3+

 to Co
2+

 occurs.  Also, the grain size calculated from the XRD data 

grows faster when compared to the results from in-air atmospheric temperatures.  

Calculated grain sizes from the Debye-Sherrer equation showed an increase from air to 

nitrogen environments with grain sizes measuring 21 and 26 nm for 400 °C and 500 °C.  

However, related reports also stated that this reduction of cobalt ions and rate of phase 

exchange were due to the presence of oxygen.  Lower annealing pressures would allow 

for lower annealing temperatures and higher grain growth.  

 

3.5. Thermal Effects of Heat Treatments on the Crystallography of Sol-gel Surfaces 

 

Sol-gel depositions usually involve heat treatments or annealing cycles as a final 

processing step.  Typically, the solvent is dried out of the sol-gel at a low temperature 

(~60-90 °C) before being raised to a heat treatment temperature suitable for that material 

(~200 – 1000 °C). Because of this process, studies have been conducted to reflect the 

electrical, chemical, and optical properties as well as the migration of atom during heat 

treatment.  In doing so, analysis of the temperature affects on the surface is detrimental to 

the understanding of the heat treatment process.  For ATO, the grain size of the thin film 

deposited material increases directly proportional to the heat treatment temperature.  

Atomic force microscopy reveals that the surface roughness increases when the sol-gel 

thin films are heat treated.  This validates higher levels of crystallinity in heat treated sol-

gel thin films.  Also, reflections at specified angles from XRD measurements become 

higher in intensity when the films are heat treated at higher temperatures.[83, 84] Lattice 
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parameters can be calculated and evaluated for element identification, nearest neighbor 

calculations, and orientation identification.  In addition to these effects, the measured 

resistivity of ATO thin films shows a correlating decrease.  This affect has been 

attributed to the increase in charge carrier mobility and density.[83, 85]  

 

3.6. Interaction of Sol-gels in Various Environment Conditions 

 

Because of the nature of this application, the sol-gel coatings can be subjected to 

various elements of environment variations.  Also, by temperature already being an 

important factor to the fabrication and performance of the sol-gel, it also determines the 

durability of the material.  For instance, when in contact with water, hydroxylation may 

occur on the surface of the sol-gel, causing a bulk defect in the coating that can spread 

indefinitely across the entire coated surface.  Hydroxylation occurs when hydroxyl 

groups of dissociated molecules form a layer on the surface of the material, followed by a 

layer of molecular absorption.  Advantageously, tin oxide is very resistant to 

hydroxylation.  Variations in high temperature and pretreatment with chemicals must be 

used to process tin oxide for such a desired reaction.  Concurrently, Co2O3 reduces 

oxidation occurrences at different temperatures.  The combination of these two materials 

increases the longevity of the sol-gel coating in high temperature or heavy moisture 

environments, making it extremely suitable for aerospace applications.   
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CHAPTER 4  

 

UNDOPED AND COBALT-DOPED ANTIMONY TIN OXIDE SOL-GELS ON 

CARBON-SILICON LAYERS FOR MODELING SOL-GEL/CARBON FIBER 

INTERFACES 

  

4.1.      Introduction 

 

This research presents a novel thermo-responsive sol-gel(dopant) combination 

and evaluation of the actuating responses due to various heat treatment temperatures.  In 

this project, samples of antimony-doped tin oxide (ATO) doped with 0.1% cobalt oxide 

(0.1% Co2O3) sol-gel on carbon/silicon substrates are used to model the implementation 

of sol-gel coatings into carbon fiber composite systems.  While ATO is a well-known 

transparent conductive material, the addition of cobalt oxide (Co2O3) alters its 

morphology and optical parameters at low annealing temperatures.  By altering the ATO 

(0.1% Co2O3) heat treatment temperatures, the grain size starts to increase at 200 °C.  

However, when approaching 500 °C, Raman spectroscopy shows that the increase in 

intensity of ATO (0.1% Co2O3) is lower than ATO undoped.  Scanning electron 

microscopy is used for imaging, and energy dispersive spectroscopy will be used for the 

composition analysis.  Optical reflectance is reported via Fourier Transform Infrared 
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(FTIR) spectroscopy and Raman spectroscopy analysis.  Recent military efforts in 

reflective composite design have become directed towards protection against infrared 

laser degradation to carbon fiber composites.  In doing so, research efforts have been 

made toward modifying infrared reflective materials for implementation into carbon fiber 

composite systems. 

In its pure form, tin oxide has become a material of interest because of its wide 

energy band gap of ~3.6 eV, high carrier mobility, absorption in the visible spectra, and 

its reflectance in the infrared spectra when doped with group III, V, and VII elements 

such as indium, antimony, and fluorine.[3]  It has been proven that thin films of 

antimony-doped tin oxide (ATO) coatings show an increase in electrical and mechanical 

properties.  It has also been shown that ATO has been proven to have high conductivity 

and high transparency in the visible range.[24, 25, 86, 87]  Of most interest to this 

research, ATO also has beneficial reflective properties in the mid and far-range infrared 

spectra.  In addition, ATO is oxidative resistant, and band gap tailoring capabilities are 

controlled by the doping level of antimony (Sb) and the heat treatment of the sol-gel 

solution.  It has been theoretically proven that the antimony atoms in tin oxide lead to an 

impurity band with a significant free-electron-like characteristic, producing interesting 

optoelectronic properties.[80]  Annealing temperatures have been shown to have an effect 

in altering optical properties in the electronic structure of ATO.  Concurrently, the grain 

growth of cobalt (Co) in bulk
 
and its parameters when interfaced with carbon after heat 

treatments have also been examined.[83]  However, the implementation of Co as a 

dopant in antimony-doped tin oxide sol gel solutions to further enhance infrared 

reflectivity has not been reported. 
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In this work, sol-gel solutions of undoped ATO and ATO with a 0.1% Co2O3 

dopant level [ATO (0.1% Co2O3)] are deposited on carbon/silicon substrates and were 

measured for their chemical composition consistency by energy dispersive X-ray 

spectroscopy (EDS). The samples were examined by Fourier transform infrared (FTIR) 

and Raman spectroscopy for phase shifting in the crystal structure.  The analyses verify 

the composition of the samples and provide insight on how Sb and Co atoms perform 

after undergoing a variation of heat treatment temperatures.  The enhancing effect of 

cobalt oxide (Co2O3) as a dopant in ATO sol-gel coatings on carbon surfaces at low 

annealing temperatures (200-300 °C) is presumed to be caused by the crystallinity of the 

materials, the increase in grain size, and the low degradation of phase composition. 

 

4.2. COMSOL Finite Element Analysis Simulation of Sb-doped SnO2 Thin Films 

 

The simulation results shown in figure 4.2.1 show the temperature change and 

radiosity, surface irradiation, and reflectivity.  Radiosity is an optics and heat transfer 

parameter in finite element analysis that represents the total radiation intensity leaving a 

surface.  This parameter considers the radiation being emitted by the surface and 

reflected from the surface. Combining these two factors into one term allows the 

simulation software to determine the net energy exchange between multiple surfaces.  

Table 4.2.1 shows the simulation parameters.  The model simulates the lamp as a solid 

object with a volume heat source of 25 kW.  
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Figure 4.2.1. Two dimensional color graph showing the temperature change in the 

interfaces at maximum exposure from the Nd:Yag laser point source. 

 

Table 4.2.1. COMSOL finite element simulation parameters. 

 

 

 

 

 

 

 

 

Parameter Value Description 

T_wall 400[K] 

 T_gas 400[K] 

 h_gas 20[W/(m^2*K)] Heat transfer coefficient 

k_sens 27[W/(m*K)] Thermal conductivity sensor 

rho_sens 2000[kg/m^3] sensor density 

Cp_sens 500[J/(kg*K)] sensor heat capacity 

e_sens 0.8 sensor surface emissivity 

k_lamp 400[W/(m*K)] lamp thermal conductivity 

rho_lamp 8700[kg/m^3] Lamp density 

Cp_lamp 10[J/(kg*K)] lamp  heat capacity 

e_lamp 0.99 lamp surface emissivity 

q_lamp 60[kW]/(pi*50^2*1[mm^3]) lamp heating power 

e_oxide 0.05 wafer surface emissivity 

ampl 50 IR  amplification factor sensor 
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It is insulated on all surfaces except for the top, which faces the oxide layer. At 

this surface, heat leaves the lamp as radiation only. In order to capture the heat source’s 

transient startup time, the model uses a low heat capacity, Cp, for the solid (10 J/(kg·K)).  

In our simulations, it is assumed that the oxide layer dissipates energy via radiation and 

convection on all surfaces. The temperature probe is placed on the carbon/SnO2 interface, 

and the simulation results graphed both temperature and radiation. The thermal material 

properties are set to parameters set in the COMSOL material database.  The point source 

intensity was raised at 0.1 mW per second.  As seen in the plotted results in figure 4.2.2, 

the thickness of the tin oxide determined the level of reflectivity.  Within 0.05 µs, the 

different thicknesses reflected various amounts of infrared light.   

 

 

4.2.2. Reflectivity of tin oxide coated carbon surfaces versus time. 
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4.3. Experimental Procedure 

 

The ATO and ATO(0.1%Co2O3) sol-gel solution was made with a mixture of 

oxide sol-gel solutions. All of the sol-gels were made with 2-ethylhexanoic acid. The 

ratio of cobalt and antimony to tin are as follows: 

 Co2O3:SnO2 = 0.0011:1  

 Sb2O3:SnO2 = 10:90  

Silicon wafers of 300 mm diameter were cleaned using a standard wafer cleaning 

process, which removed organics, native oxide layers, and ionic contamination.  The 

wafers were then cut into 1 x 1 cm
2
 squares.  A lead target was used to sputter 10-20 nm 

of carbon onto the silicon substrate at 50 mTorr.  In each deposition, roughly 25 nm of 

carbon were deposited on a silicon substrate.  20 μL of the sol-gel solution was deposited 

on the sample surface by spin coating at a rate of 2000 rpm for 20 s.   

A programmable Vulcan 3-550 box furnace (120 V/ 12 A) was used to perform 

the heat treatments.  The samples were heat treated in the temperature range of 200-500 

°C at atmospheric pressure.  In each heat treatment, the samples were ramped up to the 

specified temperature at a rate of 10 °C/min.  Three time and temperature intervals were 

chosen to assure the evaporation of the sol and highest possible sol-gel layer quality.  

Once reached, the specified temperature was held for 1 h.  The samples were allowed to 

cool to room temperature for a minimum of 4 h before testing.  Figure 4.3.1 shows a two-

dimensional layout of the sample. 
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Figure 4.3.1. A diagram of the ATO sol-gel/carbon/silicon sample layouts used for 

electrical testing is shown.[88] 

 

4.4. Imaging Analysis 

 

 

Figure 4.4.1. EDS quantitative element composition analysis of ATO(Co2O3) after 500 

°C heat treatment.[88] 
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Imaging and EDS were done on a Hitachi S-800 scanning electron microscope 

with an EDAX-Phoenix EDS detector.  Fig. 4.4.1 shows the EDS results.  It is noticed 

that there are no visible single oxygen peaks.  This is because the oxygen (O) is at a 

lower intensity than tin (Sn) and Co, which causes the O peaks to be hidden behind the 

Sn and Co peaks.  In the ATO sol gel solution, the oxygen content was only added 1-5% 

relative to Sn, and Sb was 0.5 %.  To this solution, Co2O3 was added at 0.1 %.  However, 

because of its energy, the K- and L-shell peaks of Sb and Sn were independently 

identified. 

 

4.5. Optical Analysis 

 

4.5.1. FT-IR Analysis 

FTIR spectroscopy was performed to evaluate the effects of heat treatment to the 

sol-gel reflectivity.  From the results shown in figure 4.5.1, it is seen that the heat 

treatments can be used as a tuning procedure for a specific amount of reflectance.  The 

increase in reflectance by way of the annealing temperature is attributed to the increase in 

grain size.  Specifically, this affect is mainly due to an increase in the thermal energy for 

crystallization, recrystallization, and growth of grains in the films.  Structural parameters, 

such as dislocation density and the micro-strain are found to show a decreasing trend with 

increase in annealing temperature, which may be a result of the reduction in the 

concentration of lattice imperfections.[32]  In addition, ATO is oxidative resistant, and 

band gap tailoring capabilities are controlled by the doping level of Sb and the heat 

treatment of the sol-gel solution. 
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Figure 4.5.1. -IR spectra of ATO(Co2O3) heat treated from 200 – 500 °C. 

 

4.5.2. Thin Film Analysis – Raman Spectroscopy 

Figure 4.5.2 shows the analysis of the ATO sol-gel thin films heat treated at 200 

and 500 °C.  From the experiments, it is seen in figure 4.5.2 that the (Sb)SnO2 coating 

does, in fact, experience higher lattice vibrations in the crystal lattice due to the 

performed heat treatment.  It is shown that the vibrations in the crystal lattice increase 

after the heat treatment at 500 °C.  This is attributed to the increase in grain size growth 

and shifting of the antimony atoms towards the surface.  During the heat treatment, Sb 

forms ionic bonds with the SnO2 lattice, substitutionally replacing Sn defects and 

dislocations.  It has been shown in previous research [89] that, during the heat treatment, 

antimony atoms approach the surface, while oxygen increases the charge carrier mobility 

Figure 3. FT-IR spectra for ATO and ATO(Co2O3).  
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for tin.  When photons collide with the lattice points, fewer electrons at a lower energy 

level are observed.[88]   

 

 

Figure 4.5.2. Raman spectroscopy of ATO sol-gel thin films heat treated at 200 and 500 

°C. 

 

The change in intensity indicates the polarization change of atoms at the surface.  

Therefore, it is presumed that the migration of Sb towards the surface and the increased 

charge carrier mobility of Sn causes the change in grain size boundaries in the ATO thin 

films annealed at 500 °C as compared to 200 °C.  Collectively, he increase in reflectivity 

is correlated to the grain size growth and increase in atom density at lattice sites.[83] As 

seen in figure 4.5.3, it is seen upon visual inspection that the coating surface has a dark 

blue appearance after the heat treatment.  Distinction in between heat treatment and color 

shade were negligible.  Previous reports also agree with the assumption that this is also 

due to the redistribution of atoms and configuration of the electronic structure.   
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Figure 4.5.3. ATO(0.1%Co2O3) after a 300 °C heat treatment. 

 

Raman spectroscopy graphs in figures 4.5.4 and 4.5.5 show undoped ATO, 

Co2O3, and ATO (0.1% Co2O3) after 200 and 500 °C, respectively.  Both ATO (0.1% 

Co2O3) samples after 200 and 500 °C heat treatments showed high vibrations in the 

lattice in the 1072-1075 cm
-1

 range.  The Co2O3 sol-gel thin film remains consistent 

throughout the heat treatment range.  After heat treatment on the ATO (0.1% Co2O3) 

samples, the Sb and Co atoms form ionic bonds.  The intensity change of ATO and ATO 

(0.1% Co2O3) at higher heat treatment temperatures indicates the polarization change of 

atoms present at the surface.  When photons collide with the lattice points, fewer 

electrons at a lower energy level are observed.  
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Figure 4.5.4. Raman spectroscopy of ATO(Co2O3) after one cycle of spin coating/heat 

treatment at 200 °C.[88] 

 

The cobalt oxide films show similar Raman spectroscopy responses to that of Pal, 

et. al.[90] The increase in wavelengths is directly proportional to the increase of 

reflectivity of Co2O3. During the recombination and process, Sb and Co are diffused 

through the crystal structure by way of Sn dislocations and O deficiencies, Sb
3+

 ions 

segregate towards the surface.[36]  Previous studies have implied that Co
2+

 substitute the 

Sn
2+

 ions and O octahedral coordinated cation sites.[89]  Therefore, it is presumed that 

the Co atoms at the surface cause the slower rate of grain size increase in the ATO (0.1% 

Co2O3) thin films at 500 °C as compared to 200 °C.  
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Figure 4.5.5. Raman spectroscopy of ATO(Co2O3) after one cycle of spin coating/heat 

treatment at 500 °C.[88] 

 

4.6. Discussion 

 

As seen from previous reports, ATO forms a tetragonal crystal lattice structure 

upon deposition [91, 92].  During the heat treatment, the crystal structure is deformed, 

and Sn
3+

 ions create dislocations and defects in the crystal structure.  Concurrently, the 

grain sizes of Sn and Sb increase, causing a higher percentage of reflectivity.  The 

addition of Co2O3 appears to slow the grain size growth at ~500 °C, as opposed to the 

undoped ATO thin film that has comparable reflectivity at this temperature.  This 

reaction is attributed to the Sb
3+

, Sb
5+

, and Co
2+

 ions replacing Sn
3+

 ions in the lattice 

structure.[92]  The substitution of Sn ions for Sb and Co ions is possible because of the 

similar ionic radii (Sn = 0.071 nm, Sb = 0.065 nm, and Co = 0.071 nm).  For the effect of 

the added dopant, it has been reported that Co can have altered properties based upon the 
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roughness of the carbon surface.  In previous research, the interfacial reaction between 

cobalt and carbon based on the deposition temperature has been examined.  It was shown 

the crystallinity of cobalt was affected from deposition from temperatures as low as room 

temperature and 250 °C.  Therefore, it can be concluded that, even at low dopant levels, 

cobalt will show a variation of crystallinity and can be correlated to the optical 

parameters based upon the given heat treatment temperature.  This further proves that the 

consistency and roughness of the coating is controlled by the heat treatment temperatures.  

Furthermore, the collective data from Raman spectroscopy and FTIR shows that the 

optimal heat treatment temperatures for maximum reflectivity from ATO (0.1% Co2O3) 

sol-gel thin film coatings is between 200-400 °C. 

 

4.7. Conclusion 

 

Optical properties of ATO (0.1% Co2O3) can be altered by various heat treatment 

temperatures.  Results show that Sb
3+

, Sb
5+

, Co
3+

, and Co
5+

 ions substitute Sn
3+

 ions in 

the crystal structure, promoting changes in polarization and altering reflectivity.  Higher 

heat treatment temperatures allow more Co
3+

 and Sb
3+

 ions to merge into the crystal, 

replacing more Sn
3+

 dislocations and defects.  Future work includes investigation of 

Co2O3 at higher doping levels and higher heat treatment temperatures.  Future work will 

also include examining the magnetic properties of cobalt as a dopant inside the sol-gel 

composites.   
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CHAPTER 5  

 

INFRARED REFLECTIVE COATINGS OF ATO SOL-GELS ON CARBON FIBERS 

 

5.1. Introduction 

 

Previous research has shown the capability to reflect or absorb specified 

wavelengths of light by functionalizing various materials [2, 47].  From these research 

advancements, materials have been used in multidisciplinary applications such as 

telecommunications [20], environmental protection[21], and renewable alternative 

energy[3].  While the application of incorporating reflective sol-gels being incorporated 

into composites has been examined in previous research [47], literature is limited to 

selective types of dopants being added to metal oxide sol-gel solutions [48, 76, 93-97].  

In its pure form, tin oxide (SnO2) has become of interest to researchers because of its 

wide energy band gap of ~3.6 eV, its high carrier mobility, its absorption in the visible 

spectra, and its reflectance in the infrared spectra when doped with group III, V, and VII 

elements such as indium, antimony, and fluorine [3, 38, 68].  Antimony-doped tin oxide 

(ATO) is a well-known transparent conductive material and has been used in many 

thermal, optoelectronic, and solar applications.  For specified optical applications such as 

laser lens coatings, fiber optics, and electrochromic devices, ATO can serve as an
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actuator capable of reflecting infrared radiation in the infrared wavelengths of 0.7 – 1.2, 3 

– 5, and 8 – 12 μm.  Composites containing antimony-doped tin oxide (ATO) coatings 

show an increase in electrical and mechanical properties.  In multiple deposition 

techniques and analysis, high conductivity, low resistivity, and high transparency were 

obtained ATO films in the visible range [27, 89, 98].  ATO also has beneficial reflective 

properties in the near and mid-range infrared spectrum (620-640 nm).  These properties 

allow ATO to be implemented into designs and systems for electrochromic displays, laser 

lenses, solar panels, and electronic devices.  Annealing temperatures have been shown to 

have an effect in altering electrical and optical properties in the electronic structure and 

the grain size of ATO when interfaced with carbon thin films [4, 83].  This research 

presents the investigation of ATO sol-gel coatings on carbon fibers for its implementation 

in infrared reflective carbon fiber reinforced composites.  The main investigation lies 

within the infrared laser interaction with the surfaces of the sol-gel thin films and 

coatings.  An analysis of the heat treatment temperature effects is given, followed by a 

composition and optical analysis and discussion.  

 

5.2. Experimental Procedure 

 

The ATO and sol-gel solution was made with a mixture of oxide sol-gel solutions.  

All of the sol-gels were made with 2-ethylhexanoic acid.  The ratio of antimony oxide to 

tin oxide is Sb2O3 : SnO2 = 10: 90.  Benzene, and active solvent, was used to assist in the 

adhesion process, as graphene is commonly described as benzene stripped from its 
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hydrogen bonds[83].  The procedure used for the sol-gel thin film deposition is 

referenced here [88].  

 

 

Figure 5.2.1. A three dimensional drawing of the carboxyl bonds after a nitric acid wash. 

 

The procedure for coating the carbon fibers is as follows: 

 

1. Carbon fibers were immersed in an ethanol:acetone (1:1 ratio) solution for 2 hours.  

2. The fibers were dried in ambient air at atmospheric pressure for a minimum of 1 hour.   

3. Next, the fibers were placed in nitric acid (HNO3) for 2 hours.  By doing so, carboxyl, 

carbon monoxide, and hydroxide bonds were created on the carbon fiber surface.  

Therefore, this step promotes adhesion between the sol gel solution and the carbon 

fiber surface.  A three dimensional drawing is shown in figure 5.2.1. 

4. Next, the fibers were allowed to dry 2 hours in ambient air.   

5. The fibers were immersed in the (Sb)SnO2 sol-gel solution for 4 hours.   
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6. Lastly, the fibers were dried in the temperature range of 200-450 °C for 4 hours in air.  

Figure 5.2.2 shows the coated carbon fibers after the sol-gel coating process.  

 

 

Figure 5.2.2. Piece of interweaved 0°/90° carbon fiber mat. 

 

5.3. Surface Analysis – Scanning Electron Microscopy and Electron Diffraction 

Spectroscopy 

 

Imaging and electron diffraction spectroscopy (EDS) were done on a Hitachi S-

800 scanning electron microscope with an EDAX-EDS detector.  Scanning electron 

microscopy results are shown in figures 5.3.1 through 5.3.3.  It is noticed that there is a 

consistent coverage of sol-gel coating throughout the carbon fiber mat.  Also, from these 

images, the diameter of the individual carbon fibers were measured, which ranged from 4 

– 7 µm.     
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Figure 5.3.1. ATO coated carbon fibers heat treated at 200 °C. 

 

 

Figure 5.3.2. ATO coated carbon fibers heat treated at 300 °C. 
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Figure 5.3.3. ATO coated carbon fibers heat treated at 400 °C. 

 

The coated carbon fiber diameters ranged from 6 – 10 µm.  While sol-gel coating 

coverage is highly consistent, a distinction of coverage could not be identified through 

the heat treatment temperature study.  It was also identified that, because of the multiple 

coatings on a bulk scale, defects and micro-strains in the sol-gel surface were visible.  

This was attributed to the heat treatment process.  Small defects and cracks in the surface 

can be covered and corrected by multiple coating cycles.  In the SEM/EDS pictures in 

figure 5.3.4, it is seen that the entire fiber is coated with a high degree of uniformity with 

some areas of sol-gel agglomeration.  The consistency and roughness of the coating is 

attributed by the heat treatment temperatures.   However, the consistency and roughness 

of the coating is controlled by the heat treatment temperatures.   

The main SEM image can be reconstructed by lining up all of the photos of the 

individual elements shown from EDS.  Consistent vacancies, or dark spots, on every EDS 

2a 2c 

2e 
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element image show where the other elements dominate on the surface.  For the samples 

imaged, two cycles of immersion/drying/heat treatment were completed.  The immersion 

time was 1 hour, the room temperature drying was 4 hours.  The heat treatment time was 

maintained at 2 hours. 

 

 

Figure 5.3.4. SEM and EDS color mapping of (Sb) SnO2 coated carbon fiber mat (2a).  

Sn(2b), antimony(2c), oxygen(2d), and carbon (2e) have been identified in the sample 

separately. 

 

Figure 5.3.5 shows the EDS quantitative analysis of the Sb-doped SnO2 coated 

carbon fibers.  It is noticed that there is only one visible single oxygen peak.  This is 

because the k-shell peaks are hidden behind the Sn and Sb peaks.  Also, a majority of the 

Sb peaks are blended with the Sn peaks due to their very close l and k-shell energies.  In 

the crystal lattice of SnO2, oxygen is interstitial, and the dopant, Sb, takes advantage of 

its placement to combine with the crystal lattice.  In the Sb-doped SnO2 sol gel solution, 

the oxygen content was only added 1-5% relative to Sn, and Sb was 0.1-0.5 %.   
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Figure 5.3.5. EDS mapping of ATO thin film sample heat treated at 200 °C. 

 

5.4. Optical Analysis of ATO Sol-gel Coated Carbon Fibers – FT-IR Spectroscopy 

 

FT-IR spectroscopy was performed on a Nicolet 6700.  Analysis in figure 5.4.1 

shows that the fibers increase in reflectivity when using higher temperatures during the 

heat treatment.   FT-IR was chosen as an alternative method of optical characterization 

because of its functionality of scanning the entire sample surface and providing an 

integrated reading of reflectivity.  Raman spectroscopy analysis of the coated carbon 

fibers resulted in inconsistent readings, as the conformal surface and heat-induced coating 

defects caused fluctuations in measurement.  Prior to deposition, a nitric acid and acetone 

wash was given to the carbon fiber mats.  By doing so, carboxyl, carbon monoxide, and 

hydroxide bonds were created on the carbon fiber surface.   
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Therefore, this step promotes adhesion between the sol gel solution and the 

carbon fiber surface.  By atomic bonding nature, ATO forms a tetragonal crystal lattice.  

[92].  While oxygen is identified as the dominate donor of electrons in the system, Sb
3+

 

and Sb
5+

 ions substitute Sn
4+

 ions in the lattice structure [36], further promoting electron 

mobility and bonding between the Sb and Sn atoms.  Also, previous work has proven that 

Sn
4+

 ions create dislocations and defects in the crystal structure due to their migration 

through the crystal structure.  Because of this behavior, Sb
3+

, Sb
5+

 ions replace Sn
4+

 ions 

in the lattice structure substitutionally.   

The substitution of Sn ions for Sb ions is possible because of their similar ionic 

radii (Sn = 0.071 and Sb = 0.065).  The FT-IR studies performed by J. Zhang, et. al.[99] 

agree with the presented results, showing that the Sb ions substitute easily into the SnO2 

structure due to the Sn–O bond length, which occurs at ~600 cm
-1

.  Sb’s duplicate 

oxidation states, Sb
3+

 and Sb
5+

,   causes a shift in the Sn–O vibration feature.[99]  

Concurrently, previous results have also shown that the Sb atoms migrate to the surface, 

dominating the optoelectronic response[36].  From these results, it is hypothesized that, 

even at low dopant levels, Sb will show a variation of crystallinity and can be correlated 

to the optical and electrical behavior.  However, the consistency and roughness of the 

coating is controlled by the heat treatment temperatures.  The observed enhancing effect 

from heat treatment/annealing temperature variation is presumed to be caused by the 

crystallinity of the materials, the available amount of carboxyl bonds, and the low 

degradation of phase composition in high temperatures.  Results agree with previous 

reports that higher heat treatment temperatures allow more Sb
3+

 and Sb
5+

 ions to merge 

into the crystal, replacing Sn
4+

 dislocations and defects. 
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5.5. Conclusion 

 

In conclusion, this work shows results of sol-gel solutions of ATO deposited on 

carbon fibers and measured for their morphology and optical properties.  Based on the 

heat treatments at specified temperatures, a trend of increasing reflectivity and alteration 

in the crystal structure was observed.  FT-IR spectroscopy was used to characterize the 

material composition and infrared reflectance in the infrared spectra.  The tin peaks were 

observed, and the reflectivity increase was correlated to the heat treatment temperature.  

Scanning electron microscopy and electron diffraction spectroscopy were used for 

surface imaging and element analysis, respectively.  The qualitative EDS analysis 

identified the amounts of tin, antimony, and oxygen present.  SEM images showed a 

secondary image of the coated carbon surface, and were used to center the image for EDS 

color mapping.  The color mapping of each element verified the presence and location of 

each element at a submicron magnification.  FT-IR spectroscopy was used to characterize 

the material composition and infrared reflectance in the infrared spectra.  Scanning 

electron microscopy and electron diffraction spectroscopy were used for surface imaging 

and element analysis, respectively. 
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CHAPTER 6  

 

OPTICAL EFFECTS OF Co2O3 DOPING LEVELS IN ATO SOL-GELS ON CARBON 

FIBERS 

 

6.1. Introduction 

 

This research presents a novel thermo-responsive sol-gel(dopant) combination 

and the evaluation of infrared reflectivity due to changes in doping levels and incident 

angles of reflection  In this project, samples of antimony-doped tin oxide doped with 

cobalt oxide (ATO(x%Co2O3) 0.2<x<0.5) sol-gels were used to coat three inch 

interwoven carbon fiber mats.  These coated mats were heat treated at 250 °C and then 

tested for their reflectance via angle-dependent measurements.  The targeted spectra of 

interest was 0.7 – 2.3 μm.  Scanning electron microscopy is used for imaging, and energy 

dispersive X-ray spectroscopy will be used for the composition analysis.  Hemispherical 

total reflection was conducted, and the ATO (5%Co2O3) coating gave, while the angular 

dependent reflectivity measurements are conducted using a modified FTIR setup. 

Recent military initiatives, such as the Airborne Laser (ABL) and Advanced 

Tactical Laser (ATL) programs have expressed interest in the design of infrared laser-

based defensive systems.  These systems share the objective of locating a munitions 
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target, tracking the trajectory, and then destroying the target prior to reaching its desired 

destination.  These objectives are accomplished by the use of a network of lasers 

operating in the infrared spectrum at a 1.31 μm wavelength.  In the process of destroying 

the target, the laser shines on the surface, conforming to its surface and causing 

inadvertent combustion. The development of these lasers has led to interest in materials 

that are able to reflect infrared energy, specifically, sol gel coated carbon fibers. Also, the 

effectiveness of the lasers become of concern on conformal surfaces, which may degrade 

the lasers’ surface damage capabilities.  Investigations of these materials can provide an 

experimental view on how the reflective coatings will perform when used as a thermal 

infrared reflective shielding.     

In new studies, novel materials are being designed and implemented into 

composite designs to increase reflectivity and dissipate thermal heat at specified 

wavelengths.  In previous work, reflection and absorption of specified wavelengths has 

been demonstrated by various materials on the micro and nanometer scale.[65, 100]  The 

thermal infrared radiation reflective property of the selected materials is mainly based on 

low emissivity.  In common practice, low-emissive coatings can reflect 85-95% of the 

thermal radiation while still allowing 60-65% transmittance of specified optical 

wavelengths.   

As shown through this research, while many methods can be used to deposit 

ATO, the sol-gel method is preferred, because of its capability to create molecularly 

homogeneous solutions, its low temperature processing requirements, and the versatility 

of adding uncommon dopants that can be included in solution.  In related research, the 

sintering, or heat treatment, and temperature of the substrate have been investigated for 
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their influence on the deposition of ATO.[101]  Work performed by Zhu and Jiang has 

shown that the combination of metal oxide sol gel with ferromagnetic materials.[102]  It 

was shown that the crystallinity and resistivity is directly affected by its calcination, or 

heat treatment, temperatures.  While the addition of ferromagnetic materials into ATO 

has been examined in previous research, the literature is limited to a selective amount of 

dopants.  Figure 6.1.1 gives an illustration of the infrared reflective carbon fiber mat 

design. 

 

 

Figure 6.1.1. An infrared laser from a monochromatic infrared light source penetrating 

the surface of ATO/carbon fiber. 

 

In this set of experiments, the hemispherical reflectance and angular dependency 

of reflectance of cobalt oxide-doped ATO (ATO(x%Co2O3), where 0.2<x<0.5) sol-gel 

coatings on carbon fiber mats were investigated.  Alteration in reflectance is correlated to 

the doping levels of Co2O3.  The hemispherical reflectance is conducted to give an 

integrated 180° reflectance at a specified incident angle of 10°.  Concurrently, angular 

dependent angles examine the sol-gel coatings from its incident specular angle of ~ of 

45° and alter this angle ±5° and ±10°.  It is observed that the reflectance sol-gel varies 

ATO Sol-gel 

Infrared 

Laser Source 

Carbon fiber 
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based on the incident angle of the laser source.  We present a detailed discussion of our 

results, describing how it correlates with previous reports and how new conclusions are 

made. 

 

6.2. Experimental Procedure 

 

The ATO(x%Co2O3) sol-gel solutions were made with a mixture of oxide sol-gel 

solutions. All of the sol-gels were made with 2-ethylhexanoic acid. The ratio of cobalt 

and antimony to tin are as follows: 

 Co2O3:SnO2 = 0.0011:1 

 Sb2O3:SnO2 = 10:90.  

In our customized method of sol-gel solution fabrication, tin alkoxides were used as the 

salt, while an acid was used as the base/solvent.   

 

 

Figure 6.2.1. Carbon fiber mats in immersed in methanol. 
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In comparison to using tin chlorides as the salt, this method reduces the risk of having 

residual ions from the acid/solvent (particularly chlorine) being left on the surface and 

influencing the changes in optical properties.  Figure 6.2.1 shows a set of carbon fiber 

mats in a glass dish immersed in methanol.  3 inch x 3 inch squares of 0°/90° woven 

carbon fiber mats were immersed in a methanol and acetone wash for 30 minutes, to 

remove any post manufacturing coating.  Figure 6.2.2 shows a carbon fiber mat in a petri 

dish after being washed in methanol and acetone.   

 

 

Figure 6.2.2. Uncoated carbon fiber after methanol/acetone wash. 

 

The fiber mats were allowed to dry in air for 2 hours and where then immersed in 2 mL 

of the ATO solution.  After 2 hours of immersion, the fibers where then heat treated in a 

programmable oven (120 volts/ 12 amps) at 250 °C at atmospheric pressure.  In each heat 

treatment, the temperature was increased to 75 °C for one hour and then increased until 

250 °C was reached, to induce the slow removal of the solvent and decrease the 

possibility of combustion.  This step was also implemented to increase the sol-gel layer 
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quality.  Once reached, the specified maximum temperature was held for 1 hour.  The 

samples were allowed to cool to room temperature for a minimum of 4 hours before 

testing. Figure 6.2.3 shows the sol-gel coated glass slides in the bi-static angular 

dependent FT-IR spectroscopy sample holder.  

 

 

Figure 6.2.3. ATO(Co2O3) sol-gel coated quarts slide in the optics sample holder for bi-

static angular-dependent transmittance measurements. 

 

4 inch x 2 inch quartz slides were also prepared using the same procedure for 

transmittance tests discussed below with the optical analysis results.  Hemispherical 

measurements were conducted on an OL-70 Integrating Sphere Reflectance Attachment.  

A fixed incident angle of 10° was set to measure over a wavelength range of 900 – 1100 

nm.  A 1” diameter piece of Labsphere 99% spectralon was used as the reflectance 

standard.  For the angular-dependent reflectance, a Bio-Rad FTS 6000 FTIR system was 

modified to use the embedded Nd:YAG laser (1.064 μm).  Two separate experiments 



www.manaraa.com

83 

 

were conducted.  First, ATO(x%Co2O3) sol-gel coated glass slides were placed at a fixed 

angle of 0°.  This process was completed to investigate the transmittance and reflectivity 

of the sol-gel coatings independently of the carbon fiber mats.  Secondly, the specular 

angle was found around 90° in respect to the laser source.  Once the specular angle was 

found, the incident angle was altered ± 10° in 5° steps, giving 80°, 85°, 90°, 95°, and 

100° incident angle recordings, which is listed in table 6.2.1.  For both experiments, the 

spectra range was set to 0.7-2.3 μm.  32 scan steps were completed on each sample and 

then integrated into a reading for that particular wavelength. 

 

Table 6.2.1. Measurement angle and correlated degrees from specular angle. 

Measurement Angle Degrees from Specular Angle 

80 -10 

85 -5 

90 0 

95 5 

100 100 

 

6.3. Results 

 

6.3.1. Hemispherical Reflectance 

Three measurements at different spatial locations were made on each sample to 

account for non-uniformities and defects in the surfaces.  These measurements were then 

averaged to provide the documented reflectance results.  Each spectrometer run consists 

of two modes – comparison and run.  Inside the spectrometer system, a mirror is used to 

rotate in between a specified section of the sphere and the opening where the sample is 

placed.  The detector acts as a photodiode and gives readouts in units of amperage.  For 
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each measurement, a reference measurement is first made from the reflected light, or 

current, that is collected by the detector.  Next, the mirror is switched to reflect light from 

the sample.   

 

 

Figure 6.3.1. Hemispherical reflectance of ATO(Co2O3) sol-gel coatings on woven 

carbon fiber mats. 

 

The resulting reflectivity readout is calculated by the ratio of the comparison and 

run mode amperage readings, giving reflectivity points from 0 to 1.  To report the data in 

terms of percentage, the data points are multiplied by 100.  If light passes through the 

sample, this affects the reading and results in an error.  To correct this issue, samples 

were stacked and placed in a (0°/90°) – (+/-45°) layup scheme to minimize the possibility 

of light passing through the sample.  As seen in figure 6.3.1, the reflectivity increases 

directly proportional to the increased percentage of Co2O3.  As hypothesized, the bulk 

material measurements did not directly correlate to the thin film measurements.  
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However, the results were comparable to Cheng-Wu et.al. [103] in the 3000 – 5000 

nanometer range.  As mentioned previously, this range is desired for testing purposes 

because of the types of thermal infrared detection systems that are used to image aircrafts 

and missile systems.  The 8000 – 12000 nanometer range would be of interest if body 

temperatures were to be detected.   

 

6.3.2. Angular Dependent Reflectance 

The variation in the reflectivity of the samples is seen in figures 6.3.2 through 

6.3.7.  Figure 6.3.2 shows the reflectance data collected from the sol-gel coated glass 

slides.  Next, the ATO(x%Co2O3) sol-gel coated carbon fiber mats were placed in a bi-

static detection setup.  This means that the signal source was placed at an angle in 

reference to the detector.   

 

 

Figure 6.3.2. Reflectance of ATO sol-gel coatings with varying Co2O3 doping 

concentrations. 
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Figure 6.3.3. Reflectance of ATO(x%Co2O3) sol-gel coatings with varying Co2O3 doping 

concentrations at an 80° incident angle. 

 

 

Figure 6.3.4. Reflectance of ATO(x%Co2O3) sol-gel coatings with varying Co2O3 doping 

concentrations at an 85° incident angle. 
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Figure 6.3.5. Reflectance of ATO(x%Co2O3) sol-gel coatings with varying Co2O3 doping 

concentrations at a 90° incident angle. 

 

 

Figure 6.3.6. Reflectance of ATO(x%Co2O3) sol-gel coatings with varying Co2O3 doping 

concentrations at an 95° incident angle. 
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Figure 6.3.7. Reflectance of ATO(x%Co2O3) sol-gel coatings with varying Co2O3 doping 

concentrations at an 100° incident angle. 

 

Because of the limitations of the system, the samples were tested in the UV-

visible spectrum.  In the angle-dependent measurements, the coating of the highest 

reflectivity varied.  This was attributed to the surface roughness and possible thickness 

variations.  The sample size and placement was also taken into consideration during post 

analysis.  Because of the bi-static steup, the beam width stretched from a closely perfect 

circle with a diameter of ~3 inches to an oval shape with a diameter as wide as ~5 inches.   

 

6.4. Discussion 

 

As seen in figure 6.3.2, thin films of the ATO(x%Co2O3) sustain a range of 50-

80% reflectivity in the 0.7 to 2.3 μm spectral range.  Interestingly, ATO(2%Co2O3) 

approaches 85% reflectivity, giving the highest result.  The influence of the added of 
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Co2O3 begins to decrease the reflectivity at doping levels higher than 0.3%.  Figures 6.3.3 

through 6.3.7 agree with the thin film study that the addition of Co2O3 shows the 

influence of decreased grain growth once doped higher than 0.3%.  It is seen from the 

data that Co2O3 doping levels above this limit appear to saturate the ATO and begins to 

degrade the reflectivity.  The beam size of the laser source was roughly three inches in 

circumference.  Because of this, effects from defects in the sol-gel coatings as well as the 

carbon fiber mat’s rigid, conformal surface where negligible.  For the hemispherical 

spectroscopy, the tests were performed at atmospheric pressure in ambient air.  Because 

of this, there was a large dip present in the comparison modes measurements at 4.2 

microns.  Inside the Au sphere, the standard sample surface was 97 – 98% reflective. The 

specular plugin was also used to keep the specular component integrated into the diffused 

component.  The calibration baseline of the uncoated carbon fiber mat gave a reflectivity 

reading of ~0.2%.  During the readings, the infrared light source was kept at 6 amperes to 

reduce the signal to noise ratio.  This compensation did not compromise the readings, as 

we were still considerably high above the noise ground.   

When undoped, previous thin film investigations have shown that ATO forms a 

tetragonal crystal lattice structure.  Heat treatments deform this structure, allowing 

defects and dislocations to populate throughout the crystal.  Concurrently, antimony 

atoms migrate to the surface and increase surface chemistry reactions, thus increasing 

properties such as conductivity and, particularly, reflectivity.  While these Sb ions are 

migrating to the surface, they cause oxygen vacancies.  These excessive oxygen 

vacancies assist in the atomic alignment of cobalt in tin oxide structures.  The changes in 

reflectivity are attributed to variations of grain growth and ion interactions at the grain 
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boundaries.  From related studies [92] and our previous work [88], it is concluded that Sn 

ions can be substituted for Sb and Co ions at the grain boundary because of the similar 

ionic radii (Sn = 0.071 nm, Sb = 0.065 nm, and Co = 0.071 nm).  For the effect of  the 

added Co2O3, it has been reported that Co can have altered properties based upon the 

roughness of the carbon surface.[92] From this report, the crystallinity of cobalt varied 

from the deposition and heat treatment (or curing) process at temperatures as low as room 

temperature and 250 °C.   

 

6.5. Conclusion 

 

From our results, it is seen that ATO can increase its reflectivity on carbon fiber 

surfaces when adding less than 0.3% Co2O3.  This is attributed to a decrease in grain size 

growth and reactions at the grain boundary.  The variations in reflectivity may also be 

due to agglomerations of the sol-gel coatings in certain parts of the fiber mat, as the 

surfaces were not perfectly flat, and the fibers have conformal surfaces.  However, 

surface morphology effects were negligible due to the beam size of 3 inches.  It is 

possible that a distinctive correlation can be made by evaluating the conductivity and the 

magnetic properties coercivity to the doping levels of Co2O3. 



www.manaraa.com

91 

 

 

 

 

 

 

CHAPTER 7  

 

CONCLUSION 

 

7.1. Summary 

 

This research has presented the implementation and fabrication limits of a novel 

ferromagnetic/metal oxide sol-gel combination to reflect thermal infrared radiation.  The 

long term goal of this work is to produce a material that will minimize the possible laser 

induced damage of a material when ablated with infrared 1 – 3 µm laser sources.  This 

application was presented by the Air Force Research Laboratories and associated 

employees.  From the literature review, materials used for similar applications were 

identified.  This allowed materials of interest to be investigated for maximum output.  

The theory and implementation of ferromagnetic oxides with metal oxides to increase the 

reflectivity was also identified.  A review on currently used carbon fiber composite 

fabrication techniques showed the vacuum-assisted resin transfer molding technique was 

identified as the best process to implement this novel material into.  This work 

demonstrates the design and fabrication considerations for sol-gel based thermal infrared 

reflective coatings for multifunctional carbon fiber composite systems.  A two-stage 

approach was performed to validate theoretical conjectures and confirm experimental
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contributions.  First, thin films of undoped ATO and cobalt-doped ATO were deposited 

as a thin film.  Standard optical, chemical, and imaging characterizations were performed 

by FT-IR, Raman spectroscopy, SEM, and EDS.  Next, the sol-gels were deposited onto 

carbon fiber mats for full-scale testing of the bulk materials.   

First, investigation and validation of ATO sol-gel thin films for increased infrared 

reflectivity was performed.  In these experiments, silicon wafers were sputtered with 

carbon and then spin coated with ATO sol-gels.  The thin films were then heat treated at 

various temperatures, ranging from 100 – 500 °C.  It was shown that the infrared 

reflectivity increases based upon the heat treatment temperature.  However, the limit for 

maximum reflectivity was identified by Raman and FT-IR spectroscopy to be 300 °C.  

The explanation for this effect was attributed to the increased growth of the grain 

boundaries in the sol-gel layer.  In addition, the substitution of Sb
3+

 and Sb 
5+

 ions in Sn 

defects in the crystal lattice occurred, causing the increase in reflectivity.   

In the addition of Co2O3, sol-gel solutions of ATO and ATO(Co2O3) were spin 

coated onto carbon/silicon substrates.  From the extensive literature review, it was 

confirmed that the oxygen atoms still performed as the charge carriers as it migrated 

through the sol-gel layer.  The increased reflectivity was still attributed to the grain 

boundary growth.  Concurrently, the substitution of Sn
+2

 atom defects and vacancies were 

substituted by Sb
3+

, Sb
5+

, Co
2+

, and Co
3+

 ions.  While increased heat treatment 

temperatures on undoped ATO sol-gels correlated to an increase in reflectivity between 

85 – 90 %, the inclusion of 0.1% Co2O3 showed an increase in reflectivity up to 94 %.  

The ion substitution was proven by Raman spectroscopy investigations.  In the spectra, is 

was observed that Co2O3 had a constant level of reflectivity, regardless of the heat 
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treatment temperatures up to 500 °C.  However, the ATO(Co2O3) thin film showed 

higher reflectivity up to 400 °C when compared to the undoped ATO thin film.  

In the second stage of investigation, the reflectivity of ATO sol-gels were doped 

in various levels of Co2O3 in the range of 0.1 – 0.5%.  The percentage level was kept low 

due to previous literature already identifying a low Co2O3 doping limit of 7% producing 

higher reflectivity.  The secondary purpose was to identify the minimal amount of Co2O3 

needed to still maximize infrared reflectivity.  The coated carbon fibers were then heat 

treated at 250 °C, because of previous results and previous literature confirmations of 

heat treatment limitations.  Hemispherical integrated reflectance spectroscopy was 

performed to investigate the absorption and reflection of the sol-gel coatings on carbon 

fibers.   

While it was identified that one coating was not enough to stop the carbon fibers 

from dominating the absorption of infrared light, two coatings proved to be enough to get 

high levels of thermal infrared reflection.  The specular and diffuse components of 

reflectivity were integrated together in the plot shown in chapter 6.   In addition, angular-

dependent bi-static transmittance spectroscopy was performed.  From these experiments, 

it was shown that the specular angle of 90° showed the highest reflectivity.  However, 

ATO(0.3%Co2O3) showed the most reflectivity when altered from 80 - 100° of incident 

infrared radiation.  The levels of reflectivity from the sol-gel coated carbon fibers were 

then compared with thin film results.  It was noticed that the angles closest to the specular 

angle, 85° and 95° showed the most comparable results, still resulting in 80 – 85% 

reflectivity and 15 – 20% transmittance.  Because of the results obtained from this 

experiment, a qualitative analysis of the effect of number of coating layers versus the 
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optical response is suggested.  This suggested experiment is also mentioned in the future 

work section.  

 

7.2. Recommendations for Future Work 

 

To extend the limitations of this work, higher and more specific levels of Co2O3 

doping levels can be identified and tested.  However, due to previous literature, it is not 

expected that the Co2O3 doping levels will exceed past 10%.  In addition, slightly higher 

limits on the heat treatment of the sol-gel thin films and coated carbon fibers may yield 

varying results.   The grain boundaries may have more room to grow, and it may 

compensate for the addition of more Co ions into the structure, as the Sb ions migrate 

towards the surface.  Also, previous literature showed that the Co2O3 level of infrared 

reflectivity could be altered by the roughness of the carbon surface.  If the carbon fiber 

surface roughness is improved by its polymer fabrication techniques, alteration in Co2O3 

infrared reflectivity will occur.   

While it was not investigated in this work, the adhesion of the sol-gel to the 

carbon fibers can be investigated by nano-indentation.  This characterization method can 

identify the strength of adhesion to the carbon fiber surface, as well as the mechanical 

strength of the sol-gel coating.  This is also vital information when implementing coated 

carbon fibers into the VARTM process.  It would notify the fabricator of its fragileness 

and flexibility.  Therefore, with this research results, it is proven that the materials can be 

used in mainly flat composite designs until further investigations are done on the 

flexibility of the coating surfaces.  Scanning acoustic microscopy and non-contact atomic 
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force microscopy can be performed to identify micro and nanoscale defects in the 

coatings.  This will cause variations in the reflectivity measurements.  Last, a study of the 

laser interaction with the ATO(x%Co2O3) sol-gel coating will further verify how the 

coating will perform under various laser conditions. The purpose of this experiment is to 

investigate the laser damage threshold (LIDT) of cobalt-doped antimony-tin-oxide (ATO) 

sol-gel coatings in carbon fiber composites.  This is of interest to the AFRL for current 

undisclosed military applications.  In general, the breakdown time in correlation with the 

applied laser power in both instances of pulse count and duration time is of interest.  This 

information is to assist in the design of a thermal infrared reflective coating for carbon 

fiber composites.  Furthermore, the information obtained from this report will contribute 

to the body of knowledge for such materials in multiple applications such as 

optoelectronics, transparent conductive oxides for solar cells, and light emitting diodes.  

LIDT is defined as the highest fluence for which no damage has been observed.  

Heat treatments applied to the ATO(Co) sol-gel coatings alter their 

crystallography and optical parameters.  It has been reported that increasing temperatures 

cause the antimony (Sb) atoms to approach the surface, while cobalt (Co) reinforces the 

interface by the carbon surface.  Also, tin (Sn) transverses the medium, leaving 

dislocations and defects.  Sn
4+

, Sb
3+

, Sb5+, Co
3+

 and Co
5+

 have similar radii.  This causes 

cobalt and antimony atoms to fill these vacancies in the crystal lattice.  It is from this that 

the hypothesis is formed.  From this set of experiments, a correlation between the surface 

roughness and calculated LIDT to the laser pulse count and duration time is to be 

obtained.  Also, in conjunction with previous reports of ATO and cobalt’s optical and 

structural parameters, data from the following experiments will be collected to calculate 
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the surface temperatures [2]. That data will then be correlated to the LIDT and surface 

roughness.  ATO is transparent in the visible spectra, absorbing in the UV spectra, and 

reflective in the near infrared range (0.7 – 1.2 μm).  The increase in heat treatment 

temperatures will decrease defects and dislocations in the sol-gel coating’s stoichiometry.  

A Nd:YAG laser of 1064 nm (1.064 μm) pulsing at 10 ns with a beam width of 100 μm 

will show that the LIDT will vary around 23 J/cm
2
.  The resin used to make the 

composite is predicted to be evaporated by the laser and to not alter the LIDT.   

 

7.3. Outlook for Possible Future Applications 

 

From this work, various applications can be improved.  In the novelty of the 

fabrication method, it is already being pursued to be proven in research that zirconium 

oxide/silicon carbide sol-gel precursor combinations can produce high temperature 

coatings for supersonic and hypersonic applications.  In initial literature, the possibility of 

this sol-gel precursor implementation success is identified because of zirconium oxide 

and silicon carbide’s high melting point of ~2700 C.  Just as cobalt was shown to 

increase the reflectivity of ATO thin films, it is presumed that zirconium oxide will have 

similar effects with silicon carbide.  In sol-gel applications, polycarbosilane is used as the 

precursor for silicon carbide sol-gel thin films.  After heat treatments at high 

temperatures, the thermal breakdown temperatures of this novel sol-gel combination can 

be identified.  

The design of fiber optic cables relies heavily on the physics described in the area 

of plasmonics.  In this field of study, a plasmon, or electron oscillation, can act 
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independently or be paired up with an excited electron, or photon, to transfer high bit-rate 

information.  Usually, a laser of a specified wavelength is used to bombard the surface of 

a metal or metal oxide to release electron (wave)/ electron (particle) pairs from the 

surface of the material. These electron pairs are detected by a correlated system that 

converts the electron pairs to bit information that can then be further converted to various 

forms of data.  The coatings used in this project would be ideal for this type of 

application because of its high level of reflectivity.  Because fiber optics currently faces 

challenges with length from transmitter to receiver and signal durability, a coating of high 

reflectivity would increase the integrity and durability of the sent signal at longer 

distances.   

Also, in the application of laser lenses, the conducted literature review on how 

lasers work and types of laser windows showed the possible implementation of ATO sol-

gel coatings as a possible laser lens coating material.  In laser lenses, over 90% of the 

infrared light generated by its medium is reflected back into the laser source from the 

exiting mirror before being reflected again and allowed to radiate outside of the laser 

cavity.  In order for this phenomenon to occur, highly reflective materials must be used.  

Today, materials such as chromium oxide and tin oxide are already used in commercial 

laser fabrication.  Also, similar annealing techniques are used to assist in the 

conformation of the deposited material to the lens surface.  With cobalt-doped ATO 

having a high infrared reflectivity of up to ~94%, the implementation of this novel 

material into laser lens coatings would also prove to be beneficial for unconventional 

laser cavity shapes and uncommon laser medium sources.  However, in an effort to 

produce this type of coating, more angular-dependent transmittance studies will have to 



www.manaraa.com

98 

 

be performed.  Also, another deposition method, such as the dip coating method, will 

have to be altered in order to assist in uniform coverage of the conformal lens. 

New applications such as ferroelectric composite systems are currently being 

designed in an effort to control the shape of aerospace vehicle panels based on the 

electromagnetic signal placed on the structure.  The overall objective of this application is 

to control the direction and tilt of an aerospace vehicle.  Different multifunctional 

materials, such as sheets of carbon nanotubes and magnetic materials, are currently being 

evaluated for their electrical, magnetic, and mechanical strengths to control a composite 

panel of various layers.  Because of the elements present in ATO(Co2O3), this application 

could possibly advance its progress.  As previously stated, the resistivity of ATO 

decreases with heat treatment, which validates carrier mobility enhancement.  Also, it has 

been reported that Co2O3 has excellent ferromagnetic properties, as its coercivity can be 

varied by deposition methods.  The increase in carrier mobility and charge density would 

allow the electromagnetic signals to be processed quicker at longer distances, similar to 

the advantage for fiber optics applications.  Also, stress and strain to the surfaces of the 

materials during the conforming of the surface would improve with the use of the sol-gel 

technique.  However, just as in this research, multiple coating processes would require 

monitoring for cracks, defects, and micro-strains to the surface.  Also, it is recommended 

that the investigation of the coatings undergo thin film analysis prior to composite 

implementation to assure the quality of the sol-gel layers.  This would also allow 

characterization with multiple systems at the nano and bulk scale, as opposed to ruling 

out certain test methods because of the conformal surface of the the composite system.  
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